The complete mitochondrial genomes of two model ectomycorrhizal fungi (Laccaria): features, intron dynamics and phylogenetic implications
Laccaria amethystine and L. bicolor have served as model species for studying the life history and genetics of ectomycorrhizal fungi. However, the characterizations and variations of their mitogenomes are still unknown. In the present study, the mitogenomes of the two Laccaria species were assembled...
Saved in:
Published in | International journal of biological macromolecules Vol. 145; pp. 974 - 984 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Laccaria amethystine and L. bicolor have served as model species for studying the life history and genetics of ectomycorrhizal fungi. However, the characterizations and variations of their mitogenomes are still unknown. In the present study, the mitogenomes of the two Laccaria species were assembled, annotated, and compared. The two mitogenomes of L. amethystine and L. bicolor comprised circular DNA molecules, with the sizes of 65,156 bp and 95,304 bp, respectively. Genome collinearity analysis revealed large-scale gene rearrangements between the two Laccaria species. Comparative mitogenome analysis indicated the introns of cox1 genes in Agaricales experienced frequent lost/gain eveants, which promoted the organization and size variations in Agaricales mitogenomes. Evolutionary analysis indicated the core protein-coding genes in the two mitogenomes were subject to strong pressure of purifying selection. Phylogenetic analysis using the Bayesian inference (BI) and Maximum likelihood (ML) methods based on a combined mitochondrial gene set resulted in identical and well-supported tree topologies, wherein the two Laccaria species were most closely related to Coprinopsis cinerea. This study severed as the first study on the mitogenomes of Laccaria species, which promoted a comprehensive understanding of the genetics and evolution of the model ectomycorrhizal fungi. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2019.09.188 |