On the sound fields of infinitely long strips

Exact solutions are derived for sound radiation from four kinds of infinitely-long strips: namely a rigid strip in a baffle of finite width, a resilient strip in free space, and a resilient or rigid strip in an infinite baffle. In one limit, the strip in a finite baffle becomes a rigid strip in free...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 130; no. 1; p. 153
Main Authors Mellow, Tim, Kärkkäinen, Leo
Format Journal Article
LanguageEnglish
Published United States 01.07.2011
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Exact solutions are derived for sound radiation from four kinds of infinitely-long strips: namely a rigid strip in a baffle of finite width, a resilient strip in free space, and a resilient or rigid strip in an infinite baffle. In one limit, the strip in a finite baffle becomes a rigid strip in free space and in the other, a line source in a finite baffle. Here "rigid" means that the surface velocity is uniform, whereas "resilient" means that the surface pressure is uniform, and the strip is assumed to have zero mass or stiffness, as if a force were driving the acoustic medium directly. According to the Babinet-Bouwkamp principle, radiation from a resilient strip in an infinite baffle is equivalent to diffraction of a plane wave through a slit in the same. Plots are shown for the radiation impedances, far-field directivity patterns, and on-axis pressure responses of the four kinds of strip. A simple relationship between the radiation admittance of the rigid strip in an infinite baffle and the resilient strip in free space is presented. The two-dimensional rectangular wave functions developed in this paper can be applied to related problems.
ISSN:1520-8524
DOI:10.1121/1.3596474