Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow
Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor wa...
Saved in:
Published in | Chinese journal of chemical engineering Vol. 22; no. 5; pp. 489 - 495 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1004-9541 2210-321X |
DOI | 10.1016/S1004-9541(14)60060-4 |
Cover
Loading…
Summary: | Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface. |
---|---|
Bibliography: | impinging jet, cross flow, convection heat transfer, heat transfer enhancement Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface. 11-3270/TQ LI Guoneng , ZHENG Youqu , HU Guilin , ZHANG Zhiguo ( Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China) ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/S1004-9541(14)60060-4 |