A novel transmission scheme to inter destination video synchronisation

Inter destination video synchronisation (IDVS) is a key technology in emerging interactive multimedia applications. It is essential to ensure the synchronous experiences of users in such applications. However, one inevitable barrier for IDVS is the packet transfer delay differences (PTDDs) among dif...

Full description

Saved in:
Bibliographic Details
Published inIET communications Vol. 9; no. 5; pp. 603 - 612
Main Authors Wu, Jiyan, Cheng, Bo, Shang, Yanlei, Yuen, Chau, Chen, Junliang
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 26.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inter destination video synchronisation (IDVS) is a key technology in emerging interactive multimedia applications. It is essential to ensure the synchronous experiences of users in such applications. However, one inevitable barrier for IDVS is the packet transfer delay differences (PTDDs) among different destinations. Existing researches have tried to eliminate the side effects of PTDD passively and schedule the video packets in a ‘back-to-back’ fashion. In this paper, the authors propose to proactively leverage such differences to design a transmission scheme that enhances video quality while ensuring the synchronous arrival of packets. Based on the network measurements from a real multimedia conferencing system and the Planetlab, they find that the PTDD is between the ranges of 100–250 ms. Motivated by this observation, they propose a scheme named asynchronous departure for synchronous arrival (ADSA), which inserts intervals between consecutive packets according to the synchronisation reference. To prove the superiority of ADSA, they carry out analysis based on Gilbert loss model and continuous time Markov chain. They conduct performance evaluation through emulations in Exata and experimental results show that ADSA improves the video peak signal-to-noise ratio by up to 9.1 and 6.9 dB compared with existing latest and earliest schemes, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1751-8628
1751-8636
1751-8636
DOI:10.1049/iet-com.2013.1188