Emersion behavior of the semi-terrestrial crab Neohelice granulata during hypoxic conditions: Lactate as a trigger

Climate changes affecting aquatic environments are increasing, and the resultant environmental challenges require animals to adopt alternative compensatory behavioral and physiological strategies. In particular, low levels of dissolved O2 are a regular problem for estuarine animals, leading to activ...

Full description

Saved in:
Bibliographic Details
Published inComparative biochemistry and physiology. Part A, Molecular & integrative physiology Vol. 252; p. 110835
Main Authors de Lima, Tábata Martins, de Ramos, Bruna, de Souza Tavares, Margarita, Leidens, Danusa, Ayres, Bruna Soares, Maciel, Fábio Everton, Nery, Luiz Eduardo Maia
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Climate changes affecting aquatic environments are increasing, and the resultant environmental challenges require animals to adopt alternative compensatory behavioral and physiological strategies. In particular, low levels of dissolved O2 are a regular problem for estuarine animals, leading to activation of a series of behavioral and physiological responses. This study on the semi-terrestrial crab Neohelice granulata examined patterns of emersion behavior under different levels of dissolved O2 availability and the role of lactate in this behavior. Emersion behavior was recorded for 4.5 h for crabs in water at four different levels of dissolved O2 (6, 3, 2, and 1 mg O2/L) and with free access to air. Oxygen consumption and hemolymphatic lactate levels were measured using the same experimental design. Emersion behavior was also recorded for 70 min in normoxic water after lactate or saline injections. Crabs increased their emersion behavior only in severe hypoxia (1 mg O2/L), and O2 consumption decreased under more severe hypoxic conditions. Despite the increase in emersion behavior, which leads to higher O2 availability, an increase in hemolymphatic lactate levels indicates that the animals still need to resort to anaerobic pathways to fulfill their metabolic demand. Furthermore, animals injected with lactate showed higher emersion behaviors than animals injected with a saline solution even in normoxia. These results suggest that the increase in hemolymphatic lactate can act directly or indirectly as a trigger for the increase in emersion behavior in the semi-terrestrial crab N. granulata. [Display omitted] •Neohelice granulata only increases emersion behavior in severe hypoxia (1mgO2/L).•Lactate levels increased in severe hypoxia (1mgO2/L) even with free access to air.•Rise in lactate levels indicates that emersion does not prevent anaerobic pathways.•Lactate solution injections increased emersion behavior even in normoxic water.•Lactate direct or indirectly triggers emersion behavior on N. granulata.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2020.110835