Production and Optimization of Biodiesel in a Membrane Reactor, Using a Solid Base Catalyst

The commercial Calcium oxide was successfully embedded on activated carbon surfaces to increase the reactive surface area of a composite catalyst material CaO/AC. The composite catalyst material was also successfully packed in the tubular titanium dioxide/Aluminum dioxide ceramic membrane reactor us...

Full description

Saved in:
Bibliographic Details
Published inMembranes (Basel) Vol. 12; no. 7; p. 674
Main Authors Olagunju, Olusegun Ayodeji, Musonge, Paul, Kiambi, Sammy Lewis
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The commercial Calcium oxide was successfully embedded on activated carbon surfaces to increase the reactive surface area of a composite catalyst material CaO/AC. The composite catalyst material was also successfully packed in the tubular titanium dioxide/Aluminum dioxide ceramic membrane reactor used to separate the biodiesel produced. Virgin soybean oil was used as precursor feedstock for the reaction. Using a central composite approach, response surface methodology (RSM) was employed to obtain the optimum conditions for producing biodiesel from soybean oil. A total of four process factors were examined (24 experimental designs). 30 experiments were derived and run to investigate the effects of temperature, reaction time, methanol to oil molar ratio, and catalyst concentration (calcium oxide attached on activated carbon). 96.9 percent of soybean oil methyl ester (SOME/biodiesel) was produced at 65 °C temperature, 90 min of reaction time, 4.2:1 molar ratio of methanol to oil, and 3.0 wt.% catalyst concentration. The measured yield and expected biodiesel production values were correlated in a linear sequence. The fuel qualities of SOME/biodiesel were tested, including kinematic viscosity, density, flash point, copper corrosion, calorific value, cloud point, pour point, ash content, and carbon residue.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes12070674