Sensitive, Selective and Reliable Detection of Fe3+ in Lake Water via Carbon Dots-Based Fluorescence Assay
In this study, C-dots were facilely synthesized via microwave irradiation using citric acid and ethylenediamine as carbon precursors. The fluorescence emissions of the C-dots could be selectively quenched by Fe3+, and the degree of quenching was linearly related to the concentrations of Fe3+ present...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 19; p. 6749 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
10.10.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, C-dots were facilely synthesized via microwave irradiation using citric acid and ethylenediamine as carbon precursors. The fluorescence emissions of the C-dots could be selectively quenched by Fe3+, and the degree of quenching was linearly related to the concentrations of Fe3+ presented. This phenomenon was utilized to develop a sensitive fluorescence assay for Fe3+ detection with broad linear range (0–250, 250–1200 μmol/L) and low detection limit (1.68 μmol/L). Most importantly, the assay demonstrated high reliability towards samples in deionized water, tap water and lake water, which should find potential applications for Fe3+ monitoring in complicated environments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27196749 |