Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane

[Display omitted] An abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire w...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 647; pp. 467 - 477
Main Authors Hu, Wen-Yu, Yu, Ke-Xin, Zheng, Qi-Na, Hu, Qi-Liang, Cao, Cheng-Fei, Cao, Kun, Sun, Weifu, Gao, Jie-Feng, Shi, Yongqian, Song, Pingan, Tang, Long-Cheng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] An abundance of early warning graphene-based nano-materials and sensors have been developed to avoid and prevent the critical fire risk of combustible materials. However, there are still some limitations that should be addressed, such as the black color, high-cost and single fire warning response of graphene-based fire warning materials. Herein, we report an unexpected montmorillonite (MMT)-based intelligent fire warning materials that have excellent fire cyclic warning performance and reliable flame retardancy. Combining phenyltriethoxysilane (PTES) molecules, poly(p-phenylene benzobisoxazole) nanofiber (PBONF), and layers of MMT to form a silane crosslinked 3D nanonetwork system, the homologous PTES decorated MMT-PBONF nanocomposites are designed and fabricated via a sol–gel process and low temperature self-assembly method. The optimized nanocomposite paper shows good mechanical flexibility (good recovery after kneading or bending process), high tensile strength of ∼81 MPa and good water resistance. Furthermore, the nanocomposite paper exhibits high-temperature flame resistance (almost unchanged structure and size after 120 s combustion), sensitive flame alarm response (∼0.3 s response once exposure onto a flame), cyclic fire warning performance (>40 cycles), and adaptability to complex fire situations (several fire attack and evacuation scenarios), showing promising applications for monitoring the critical fire risk of combustible materials. Therefore, this work paves a rational way for design and fabrication of MMT-based smart fire warning materials that combine excellent flame shielding and sensitive fire alarm functions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.05.119