A comparative study of semi-flexible linear and ring polymer conformational change in an anisotropic environment
We adopt a Langevin-dynamics based simulation to systematically study the conformational change of a semi-flexible probed polymer in a rod crowding environment. Two topologically different probed polymer types, linear and ring polymers, are specifically considered. Our results unravel the significan...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 16; pp. 9137 - 9147 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We adopt a Langevin-dynamics based simulation to systematically study the conformational change of a semi-flexible probed polymer in a rod crowding environment. Two topologically different probed polymer types, linear and ring polymers, are specifically considered. Our results unravel the significance of the interplay of probed polymer's semi-flexibility and crowding anisotropy. Firstly, both ring and linear polymers show a non-trivial dimensional change including nonmonotonicity and collapse-swelling crossover as their stiffness increases. Secondly, we modulate rod crowder length to investigate the anisotropic effect. We reveal that the formation of an ordered parallel arrangement of the environment can effectively lead to a remarkable stretching effect on the probed polymer. The coupling between the crowding anisotropy-induced stretching and the polymer stiffness can account for the unusual swelling behavior. Lastly, nonmonotonic swelling and shape change of the ring polymer are analyzed. We find out that the ring polymer is subject to most pronounced swelling at robust stiffness. Moreover, the maximum prolate shape is also observed at the same robust location.
We adopt a Langevin-dynamics based simulation to systematically study the conformational change of a semi-flexible probed polymer in a rod crowding environment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/c9cp07018d |