Local Anatomic Precursors to New-Onset Geographic Atrophy in Age-Related Macular Degeneration as Defined on OCT
In macula-wide analyses, spectral-domain (SD) optical coherence tomography (OCT) features including drusen volume, hyperreflective foci, and OCT-reflective drusen substructures independently predict geographic atrophy (GA) onset secondary to age-related macular degeneration (AMD). We sought to ident...
Saved in:
Published in | Ophthalmology retina Vol. 5; no. 5; p. 396 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2021
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | In macula-wide analyses, spectral-domain (SD) optical coherence tomography (OCT) features including drusen volume, hyperreflective foci, and OCT-reflective drusen substructures independently predict geographic atrophy (GA) onset secondary to age-related macular degeneration (AMD). We sought to identify SD OCT features in the location of new GA before its onset.
Retrospective study.
Age-Related Eye Disease Study 2 Ancillary SD OCT Study participants.
We analyzed longitudinally captured SD OCT images and color photographs from 488 eyes of 488 participants with intermediate AMD at baseline. Sixty-two eyes with sufficient image quality demonstrated new-onset GA on color photographs during study years 2 through 7. The area of new-onset GA and one size-matched control region in the same eye were segmented separately, and corresponding spatial volumes on registered SD OCT images at the GA incident year and at 2, 3, and 4 years previously were defined. Differences in SD OCT features between paired precursor regions were evaluated through matched-pairs analyses.
Localized SD OCT features 2 years before GA onset.
Compared with paired control regions, GA precursor regions at 2, 3, and 4 years before (n = 54, 33, and 25, respectively) showed greater drusen volume (P = 0.01, P = 0.003, and P = 0.003, respectively). At 2 and 3 years before GA onset, they were associated with the presence of hypertransmission (P < 0.001 and P = 0.03, respectively), hyperreflective foci (P < 0.001 and P = 0.045, respectively), OCT-reflective drusen substructures (P = 0.004 and P = 0.03, respectively), and loss or disruption of the photoreceptor zone, ellipsoid zone, and retinal pigment epithelium (RPE, P < 0.001 and P = 0.005-0.045, respectively). At 4 years before GA onset, precursor regions were associated with photoreceptor zone thinning (P = 0.007) and interdigitation zone loss (P = 0.045).
Evolution to GA is heralded by early local photoreceptor changes and drusen accumulation, detectable 4 years before GA onset. These precede other anatomic heralds such as RPE changes and drusen substructure emergence detectable 1 to 2 years before GA. This study thus identified earlier end points for GA as potential therapeutic targets in clinical trials. |
---|---|
ISSN: | 2468-6530 |
DOI: | 10.1016/j.oret.2020.12.010 |