Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region

Water scarcity is the most obstacle faced by irrigation water requirements, likewise, limited available meteorological data to calculate reference evapotranspiration. Consequently, the focal aims of the investigation are to assess the potential of machine learning models in forecasting irrigation wa...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 37; no. 4; pp. 1557 - 1580
Main Authors Mokhtar, Ali, Al-Ansari, Nadhir, El-Ssawy, Wessam, Graf, Renata, Aghelpour, Pouya, He, Hongming, Hafez, Salma M., Abuarab, Mohamed
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water scarcity is the most obstacle faced by irrigation water requirements, likewise, limited available meteorological data to calculate reference evapotranspiration. Consequently, the focal aims of the investigation are to assess the potential of machine learning models in forecasting irrigation water requirements (IWR) of snap beans by evolving multi-scenarios of inputs parameters to figure out the impact of meteorological, crop, and soil parameters on IWR. Six models were applied, support vector regressor (SVR), random forest (RF), deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and Hybrid CNN-LSTM. Ten variables including maximum and minimum temperature, Relative humidity, wind speed, precipitation, root depth, basal crop coefficient, soil evaporation, a fraction of surface wetted and, exposed and soil wetted fraction were used as the input data for models with their combination, 8 input scenarios were designed. Overall models, the best scenario was scenario 4 (relative humidity, wind speed, basal crop coefficient, soil evaporation), however, the best scenario for DNN and RF model was scenario 7 (root depth, basal crop coefficient, soil evaporation, fraction of surface wetted, exposed and soil wetted fraction). While the weakest one was the group of climatic factors in scenario 6 (maximum temperature, minimum temperature, relative humidity, wind speed, and precipitation). Among the models, the hybrid LTSM & CNN was the most accurate and the SVR model had the lowest estimation accuracy. The outcomes of this research work could set up a modeling strategy that would set in motion the improvement of efforts to identify the shortages in IWR forecasting, which sequentially may support alleviation strategies such as policies for sustainable water use and water resources management. The current approach was promising and has research value for other similar regions.
ISSN:0920-4741
1573-1650
1573-1650
DOI:10.1007/s11269-023-03443-x