ZIF-67-derived Co/CoSe ultrafine nanocrystal Schottky heterojunction decorated hollow carbon nanospheres as new-type anodes for potassium-ion batteries
[Display omitted] Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of po...
Saved in:
Published in | Journal of colloid and interface science Vol. 645; pp. 55 - 65 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2023
|
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of potassium ions, the pure MOF crystal structure is prone to collapse during ion insertion and processing, so its electrochemical performance is quite limited. In this work, a hollow carbon sphere-supported MOF-derived Co/CoSe heterojunction anode material for potassium-ion batteries was developed by a hydrothermal method. The anode has high potassium storage capacity (461.9 mA h/g after 200 cycles at 1 A/g), excellent cycling stability and superior rate performance. It is worth noting that the potassium ion storage capacity of the anode material shows a gradual upward trend with the charge–discharge cycle, which is 145.9 mA h/g after 3000 cycles at a current density of 10 A/g. This work demonstrates that MOF-derived CoSe anodes with high capacity and low cost may be promising candidates for the introduction of potassium ion storage. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.04.079 |