Research Note: Comprehensive proteomic, phosphoproteomic, and N-glycoproteomic analysis of chicken egg yolk plasma

Chicken egg yolk plasma (EYP), the supernatant fraction of egg yolk obtained by water dilution and centrifugation, is a rich source of various bioactive substances and a significant bearer of yolk-emulsifying properties. This study utilized proteomics to conduct a comprehensive and in-depth analysis...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 103; no. 12; p. 104253
Main Authors Xiao, Di, Hu, Gan, Ding, Qianying, He, Hong, Wang, Jinqiu, Geng, Fang
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chicken egg yolk plasma (EYP), the supernatant fraction of egg yolk obtained by water dilution and centrifugation, is a rich source of various bioactive substances and a significant bearer of yolk-emulsifying properties. This study utilized proteomics to conduct a comprehensive and in-depth analysis of both common and modified EYP proteins (phosphorylated proteins and N-glycosylated proteins). Total of 208 proteins were identified in EYP, including 42 phosphorylated proteins with 137 phosphorylation sites and 150 N-glycoproteins with 332 N-glycosylation sites. Among the phosphorylation sites, tyrosine accounted for 80.6%, while the N-glycosylation sites predominantly featured “N-X-T” motifs, accounting for 58.7%. Functional enrichment analysis revealed that most proteins were involved in regulating enzyme activity and inhibition with a particular focus on modulating peptidase activity. Notably, vitellogenins-2 (30 phosphorylation sites, 9 N-glycosylation sites) and apolipoprotein B (10 phosphorylation sites, 56 N-glycosylation sites) were the 2 proteins with the most modification sites. Additionally, EYP was found to contain the highly N-glycosylated complement proteins C3 and C4. These findings provide new insights into the protein composition of EYP and its roles in chicken embryo development and immune defense, offering a theoretical foundation for the application of EYP in various fields.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
Co-Corresponding author.
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.104253