Adaptive Neural Output-Feedback Decentralized Control for Large-Scale Nonlinear Systems With Stochastic Disturbances

This paper addresses the problem of adaptive neural output-feedback decentralized control for a class of strongly interconnected nonlinear systems suffering stochastic disturbances. An state observer is designed to approximate the unmeasurable state signals. Using the approximation capability of rad...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 3; pp. 972 - 983
Main Authors Wang, Huanqing, Liu, Peter Xiaoping, Bao, Jialei, Xie, Xue-Jun, Li, Shuai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses the problem of adaptive neural output-feedback decentralized control for a class of strongly interconnected nonlinear systems suffering stochastic disturbances. An state observer is designed to approximate the unmeasurable state signals. Using the approximation capability of radial basis function neural networks (NNs) and employing classic adaptive control strategy, an observer-based adaptive backstepping decentralized controller is developed. In the control design process, NNs are applied to model the uncertain nonlinear functions, and adaptive control and backstepping are combined to construct the controller. The developed control scheme can guarantee that all signals in the closed-loop systems are semiglobally uniformly ultimately bounded in fourth-moment. The simulation results demonstrate the effectiveness of the presented control scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2019.2912082