Online chicken carcass volume estimation using depth imaging and 3-D reconstruction

Variability in the size of slaughtered chickens remains a longstanding challenge in the standardization of the poultry industry. To address this issue, we present a novel approach that uses volume as a grading metric for chicken carcasses. This innovative method, unexplored in existing studies, empl...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 103; no. 12; p. 104232
Main Authors Nyalala, Innocent, Jiayu, Zhang, Zixuan, Chen, Junlong, Chen, Chen, Kunjie
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Variability in the size of slaughtered chickens remains a longstanding challenge in the standardization of the poultry industry. To address this issue, we present a novel approach that uses volume as a grading metric for chicken carcasses. This innovative method, unexplored in existing studies, employs real-time data capture of moving chicken carcasses on a production line using Kinect v2 depth imaging and 3-D reconstruction technologies. The captured depth images are processed into point clouds followed by 3-D reconstruction. Volume is calculated from the reconstructed models using the surface integration method, and additional 2-D and 3-D features are extracted as input parameters for machine learning models. Multiple regression models were evaluated, with the bagged tree model demonstrating superior performance, achieving an R² value of 0.9988, RMSE of 5.335, and ARE of 2.125%. Furthermore, our method showed remarkable efficiency with an average processing time of less than 1.6 seconds per carcass. These results indicate that our novel approach fills a critical gap in existing automated grading methodologies by offering both accuracy and efficiency. This validates the applicability of depth imaging, 3-D reconstruction, and machine learning for estimating chicken carcass volume with high precision, thereby enabling a more comprehensive, efficient, and reliable chicken carcass grading system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.104232