Insertion-based Decoding with Automatically Inferred Generation Order

Conventional neural autoregressive decoding commonly assumes a fixed left-to-right generation order, which may be sub-optimal. In this work, we propose a novel decoding algorithm— InDIGO—which supports flexible sequence generation in arbitrary orders through insertion operations. We extend Transform...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Association for Computational Linguistics Vol. 7; pp. 661 - 676
Main Authors Gu, Jiatao, Liu, Qi, Cho, Kyunghyun
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.11.2019
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conventional neural autoregressive decoding commonly assumes a fixed left-to-right generation order, which may be sub-optimal. In this work, we propose a novel decoding algorithm— InDIGO—which supports flexible sequence generation in arbitrary orders through insertion operations. We extend Transformer, a state-of-the-art sequence generation model, to efficiently implement the proposed approach, enabling it to be trained with either a pre-defined generation order or adaptive orders obtained from beam-search. Experiments on four real-world tasks, including word order recovery, machine translation, image caption, and code generation, demonstrate that our algorithm can generate sequences following arbitrary orders, while achieving competitive or even better performance compared with the conventional left-to-right generation. The generated sequences show that InDIGO adopts adaptive generation orders based on input information.
Bibliography:Volume, 2019
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2307-387X
2307-387X
DOI:10.1162/tacl_a_00292