High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem

A study of high-order soliton matrices for Sasa–Satsuma equation in the framework of the Riemann–Hilbert problem approach is presented. Through a standard dressing procedure, soliton matrices for simple zeros and elementary high-order zeros in the Riemann–Hilbert problem for Sasa–Satsuma equation ar...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 45; pp. 918 - 941
Main Authors Yang, Bo, Chen, Yong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A study of high-order soliton matrices for Sasa–Satsuma equation in the framework of the Riemann–Hilbert problem approach is presented. Through a standard dressing procedure, soliton matrices for simple zeros and elementary high-order zeros in the Riemann–Hilbert problem for Sasa–Satsuma equation are constructed, respectively. It is noted that pairs of zeros are simultaneously tackled in the situation of the high-order zeros, which is different from other NLS-type equation. Furthermore, the generalized Darboux transformation for Sasa–Satsuma equation is also presented. Moreover, collision dynamics along with the asymptotic behavior for the two-solitons are analyzed, and long time asymptotic estimations for the high-order one-soliton are concretely calculated. In this case, two double-humped solitons with nearly equal velocities and amplitudes can be observed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2018.08.004