Immobilized molybdenum–thiosemicarbazide Schiff base complex on the surface of magnetite nanoparticles as a new nanocatalyst for the epoxidation of olefins

In this work, a new magnetically recoverable nanocatalyst was developed by immobilization of thiosemicarbazide ligand on the surface of silica coated magnetite nanoparticles (SCMNPs) through Schiff base condensation and followed complexation with MoO2(acac)2. Characterization of the prepared nanocat...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 354; pp. 317 - 323
Main Authors Mohammadikish, M., Masteri-Farahani, M., Mahdavi, S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, a new magnetically recoverable nanocatalyst was developed by immobilization of thiosemicarbazide ligand on the surface of silica coated magnetite nanoparticles (SCMNPs) through Schiff base condensation and followed complexation with MoO2(acac)2. Characterization of the prepared nanocatalyst was performed with different physicochemical methods such as Fourier transform infrared (FT-IR) and atomic absorption spectroscopies, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The prepared catalyst catalyzed the epoxidation of olefins and allyl alcohols with tert-butyl hydroperoxide (TBHP) and cumene hydroperoxide (CHP) quantitatively with excellent selectivity toward the corresponding epoxides under mild reaction conditions. [Display omitted] •Silica coated magnetite nanoparticles were modified with a thiosemicarbazide-Schiff base ligand.•Complexation of the supported ligand with molybdenum resulted in preparation of a new hybrid nanomaterial.•The prepared hybrid nanomaterial acted as an efficient and reusable catalyst in the epoxidation of olefins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-8853
DOI:10.1016/j.jmmm.2013.11.013