Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys

Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a pr...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 310; p. 121346
Main Authors Zhang, Yuanzheng, Chen, Xiang, Wang, Weilai, Yin, Lifeng, Crittenden, John C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.08.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface. [Display omitted] ●Au1Cu single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs) is reported.●A highly NH3 Faradaic efficiency of 98.7% is obtained on the VCu-Au1Cu SAAs.●VCu-Au1Cu SAAs promoted H2O dissociation to *H that boost NO3–-to-NH3 conversion.●DFT revealed the role of single-atom and vacancy defect on catalytic performance.
AbstractList Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface.
Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface. [Display omitted] ●Au1Cu single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs) is reported.●A highly NH3 Faradaic efficiency of 98.7% is obtained on the VCu-Au1Cu SAAs.●VCu-Au1Cu SAAs promoted H2O dissociation to *H that boost NO3–-to-NH3 conversion.●DFT revealed the role of single-atom and vacancy defect on catalytic performance.
ArticleNumber 121346
Author Zhang, Yuanzheng
Yin, Lifeng
Crittenden, John C.
Chen, Xiang
Wang, Weilai
Author_xml – sequence: 1
  givenname: Yuanzheng
  surname: Zhang
  fullname: Zhang, Yuanzheng
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Weilai
  surname: Wang
  fullname: Wang, Weilai
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
– sequence: 4
  givenname: Lifeng
  surname: Yin
  fullname: Yin, Lifeng
  email: lfyin@bnu.edu.cn, yinlifeng@gmail.com
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
– sequence: 5
  givenname: John C.
  surname: Crittenden
  fullname: Crittenden, John C.
  organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
BookMark eNqFkE1LAzEQhoMo2Fb_gYeAFz1snSS72dSDIKV-gOBFD55CzM5KynZTk6zQf2_KevKgp2Fgnnd4nyk57H2PhJwxmDNg8mo9N1tr0vucA-dzxpko5QGZMFWLQiglDskEFlwWQtTimExjXAMAF1xNyNuqQ5uCz7jpdslZ2rsUTEIasBlscr6nyVOz2fjeGZq3BttMuC-ktwNbDvSCMXZJo-s_OixM8htqus7v4gk5ak0X8fRnzsjr3epl-VA8Pd8_Lm-fClsCpMIobJRkZqEQTFuBYgtErCwHbBor6xLqhQWQwFvFTcWkFEwIlOV7JXhpWzEj52PuNvjPAWPSaz-EPr_UXMqaS1bXVb66Hq9s8DEGbLV1yezr5bau0wz0XqVe61Gl3qvUo8oMl7_gbXAbE3b_YTcjhrn-l8Ogo3XYW2xcyAp1493fAd_7mpBW
CitedBy_id crossref_primary_10_1002_cctc_202400415
crossref_primary_10_1039_D3QI00865G
crossref_primary_10_1021_acs_inorgchem_3c02334
crossref_primary_10_1039_D3QM00114H
crossref_primary_10_1039_D2EE04095F
crossref_primary_10_1002_adma_202209855
crossref_primary_10_1021_acs_jpcc_3c01242
crossref_primary_10_1002_aenm_202302274
crossref_primary_10_1021_acscatal_4c01398
crossref_primary_10_1007_s12274_023_6261_2
crossref_primary_10_1002_adma_202306633
crossref_primary_10_1002_cssc_202500017
crossref_primary_10_1016_j_apsusc_2023_156440
crossref_primary_10_1002_aenm_202402301
crossref_primary_10_1002_ange_202316910
crossref_primary_10_1016_j_seppur_2024_127050
crossref_primary_10_1016_j_apcatb_2022_121683
crossref_primary_10_1016_j_apcatb_2024_123864
crossref_primary_10_1039_D3CY01441J
crossref_primary_10_1021_acsnano_2c07911
crossref_primary_10_1002_adma_202312746
crossref_primary_10_1016_j_apcatb_2024_123980
crossref_primary_10_1002_ange_202420903
crossref_primary_10_1016_j_apcatb_2024_123862
crossref_primary_10_1016_j_nanoen_2023_108840
crossref_primary_10_2139_ssrn_4172820
crossref_primary_10_1007_s11244_024_01949_1
crossref_primary_10_1016_j_jhazmat_2025_137553
crossref_primary_10_1002_idm2_12152
crossref_primary_10_1021_acs_est_4c04014
crossref_primary_10_1016_j_nanoen_2022_107800
crossref_primary_10_1021_acscatal_4c05292
crossref_primary_10_1002_aic_18654
crossref_primary_10_1002_adfm_202410941
crossref_primary_10_1039_D4NR02387K
crossref_primary_10_1021_acsami_4c01739
crossref_primary_10_1021_acscatal_4c06705
crossref_primary_10_1080_21663831_2023_2209156
crossref_primary_10_1039_D4CY01511H
crossref_primary_10_1002_adfm_202425611
crossref_primary_10_1016_j_apcatb_2022_122192
crossref_primary_10_1016_j_jece_2024_112348
crossref_primary_10_1002_tcr_202400206
crossref_primary_10_1002_ange_202406046
crossref_primary_10_1007_s11426_022_1419_y
crossref_primary_10_1016_j_jcis_2024_01_151
crossref_primary_10_1016_j_mtcata_2023_100009
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1007_s43979_023_00055_7
crossref_primary_10_1016_j_apcatb_2022_121548
crossref_primary_10_1021_acsestengg_3c00207
crossref_primary_10_1002_cctc_202301545
crossref_primary_10_1039_D3SE01024D
crossref_primary_10_15240_tul_001_2016_2_014
crossref_primary_10_1002_chem_202303249
crossref_primary_10_1016_j_checat_2022_11_016
crossref_primary_10_1002_ange_202303483
crossref_primary_10_1007_s12274_024_6478_8
crossref_primary_10_1016_j_nanoen_2025_110708
crossref_primary_10_1007_s40843_023_2678_5
crossref_primary_10_1002_adfm_202308072
crossref_primary_10_1002_adfm_202401287
crossref_primary_10_1016_j_nanoen_2025_110843
crossref_primary_10_1016_j_watres_2023_120256
crossref_primary_10_1007_s11244_024_01933_9
crossref_primary_10_1038_s41467_024_47025_w
crossref_primary_10_1002_cctc_202401137
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_26599_NR_2025_94907135
crossref_primary_10_1002_adfm_202419248
crossref_primary_10_1002_cctc_202301641
crossref_primary_10_1016_j_apcatb_2023_122473
crossref_primary_10_1002_anie_202420903
crossref_primary_10_1016_j_jece_2024_115144
crossref_primary_10_1021_acsnano_3c05946
crossref_primary_10_1039_D4TA07470J
crossref_primary_10_1016_j_chempr_2024_03_024
crossref_primary_10_1039_D2TA04295A
crossref_primary_10_1002_adfm_202408704
crossref_primary_10_1016_j_apcatb_2023_122687
crossref_primary_10_1002_aenm_202203891
crossref_primary_10_1002_aesr_202300173
crossref_primary_10_1016_j_jhazmat_2024_134522
crossref_primary_10_1016_j_apcatb_2024_124387
crossref_primary_10_1016_j_cej_2023_148152
crossref_primary_10_1039_D4TA04389H
crossref_primary_10_1016_j_ijhydene_2025_01_323
crossref_primary_10_1002_aenm_202303863
crossref_primary_10_1021_acssuschemeng_4c04572
crossref_primary_10_1021_acsaem_3c02892
crossref_primary_10_2139_ssrn_4156149
crossref_primary_10_1002_adsu_202400934
crossref_primary_10_1039_D4SC05936K
crossref_primary_10_1007_s12274_023_5402_y
crossref_primary_10_1039_D3TA04385A
crossref_primary_10_1039_D3DT01412F
crossref_primary_10_1016_j_apcatb_2024_123967
crossref_primary_10_1021_acssuschemeng_3c07969
crossref_primary_10_1016_j_cej_2024_153108
crossref_primary_10_1039_D3NR05254K
crossref_primary_10_1016_j_apcatb_2024_124252
crossref_primary_10_1039_D4EY00002A
crossref_primary_10_1016_j_chemosphere_2024_143707
crossref_primary_10_1016_j_apcatb_2022_121981
crossref_primary_10_1002_adfm_202502073
crossref_primary_10_1039_D3QM01038D
crossref_primary_10_1039_D2TA04011E
crossref_primary_10_1002_ange_202303327
crossref_primary_10_1016_j_materresbull_2024_113079
crossref_primary_10_1007_s41918_024_00236_7
crossref_primary_10_1021_acs_nanolett_3c02259
crossref_primary_10_1016_j_apsusc_2023_157118
crossref_primary_10_1016_j_apsusc_2023_158208
crossref_primary_10_1021_acs_est_2c04456
crossref_primary_10_1073_pnas_2405236121
crossref_primary_10_1002_smll_202303732
crossref_primary_10_1016_j_surfin_2024_104294
crossref_primary_10_1021_acssuschemeng_4c00394
crossref_primary_10_1016_j_cej_2023_142384
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1007_s10853_024_09966_x
crossref_primary_10_20517_cs_2023_74
crossref_primary_10_1002_adfm_202306098
crossref_primary_10_1016_j_jcis_2024_06_020
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1021_acscatal_4c08075
crossref_primary_10_1021_acsami_2c14134
crossref_primary_10_1002_ange_202408758
crossref_primary_10_1016_j_jhazmat_2023_132813
crossref_primary_10_1002_adma_202308653
crossref_primary_10_1007_s42114_024_01105_z
crossref_primary_10_1002_anie_202303483
crossref_primary_10_1021_acs_inorgchem_3c02834
crossref_primary_10_1016_j_cej_2023_142931
crossref_primary_10_1002_anie_202406046
crossref_primary_10_1002_anie_202316910
crossref_primary_10_1002_advs_202407250
crossref_primary_10_1002_smll_202407964
crossref_primary_10_1016_j_jece_2023_110927
crossref_primary_10_1088_2058_6272_ad2d10
crossref_primary_10_1016_j_susmat_2024_e00917
crossref_primary_10_1002_smll_202203335
crossref_primary_10_1039_D2DT03720C
crossref_primary_10_1002_adfm_202209890
crossref_primary_10_1002_anie_202414314
crossref_primary_10_1016_j_mtsust_2024_101066
crossref_primary_10_1002_adfm_202303480
crossref_primary_10_1016_j_chempr_2023_05_037
crossref_primary_10_1016_j_seppur_2024_127781
crossref_primary_10_1039_D4TA06439A
crossref_primary_10_1016_j_checat_2024_101182
crossref_primary_10_1016_j_checat_2024_101060
crossref_primary_10_1016_j_psep_2024_04_146
crossref_primary_10_1016_j_mtener_2024_101610
crossref_primary_10_1002_aenm_202301136
crossref_primary_10_1016_j_jece_2024_114554
crossref_primary_10_1002_adfm_202300512
crossref_primary_10_1039_D3EY00184A
crossref_primary_10_1021_acssuschemeng_3c06240
crossref_primary_10_1002_anie_202408758
crossref_primary_10_1016_j_apcatb_2024_124408
crossref_primary_10_1002_adfm_202315324
crossref_primary_10_1002_adma_202311628
crossref_primary_10_1016_j_electacta_2024_144124
crossref_primary_10_1016_j_nanoen_2024_109396
crossref_primary_10_1016_j_scib_2023_07_036
crossref_primary_10_1016_j_jcis_2024_08_105
crossref_primary_10_1002_celc_202400499
crossref_primary_10_1039_D3TA08086B
crossref_primary_10_3390_catal15020137
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1002_ange_202414314
crossref_primary_10_1002_anie_202303327
crossref_primary_10_1016_j_ese_2023_100383
crossref_primary_10_1016_j_seppur_2023_125129
crossref_primary_10_1039_D5NJ00143A
crossref_primary_10_1002_adfm_202401472
crossref_primary_10_3390_ma16114000
crossref_primary_10_1002_cctc_202400596
crossref_primary_10_1002_smll_202308084
crossref_primary_10_1016_j_mtsust_2024_100866
crossref_primary_10_1016_j_checat_2023_100786
crossref_primary_10_1039_D3NR01089A
crossref_primary_10_1016_j_cej_2022_139403
crossref_primary_10_1016_j_electacta_2024_144915
crossref_primary_10_1021_acs_nanolett_3c03962
crossref_primary_10_1039_D2QI02757G
crossref_primary_10_1016_j_apcatb_2024_124783
crossref_primary_10_1016_j_jcis_2025_137318
crossref_primary_10_1007_s12274_024_6450_7
crossref_primary_10_1039_D2NR02813A
crossref_primary_10_1039_D4CC02726D
crossref_primary_10_1002_smll_202311124
crossref_primary_10_1021_acs_inorgchem_3c02886
crossref_primary_10_1016_j_apsusc_2022_155872
crossref_primary_10_1039_D3NA00609C
crossref_primary_10_1021_acsnano_4c05772
crossref_primary_10_1021_acsanm_4c04066
crossref_primary_10_1002_advs_202308979
crossref_primary_10_1021_acssuschemeng_4c01335
crossref_primary_10_1016_j_apcatb_2025_125248
crossref_primary_10_1016_j_surfin_2024_104286
Cites_doi 10.1002/anie.201915992
10.1039/c3cp51538a
10.1038/s41929-018-0092-7
10.1021/cr400311p
10.1021/acsenergylett.9b02374
10.1002/anie.202008759
10.1038/nature19060
10.1038/s41560-019-0450-y
10.1021/ac60072a044
10.1038/ncomms5948
10.1038/s41560-020-0654-1
10.1016/j.apcatb.2022.121094
10.1021/jacs.0c01562
10.1038/s41929-019-0269-8
10.1038/s41467-021-23115-x
10.1103/PhysRevB.54.11169
10.1021/acs.chemrev.0c00078
10.1021/ja071330n
10.1016/j.apcatb.2021.120478
10.1038/s41565-020-0746-x
10.1038/s41570-018-0010-1
10.1016/0927-0256(96)00008-0
10.1016/j.jhazmat.2021.127319
10.1038/s41467-021-21555-z
10.1021/acscatal.1c04268
10.1038/s43246-020-00068-0
10.1038/s41467-021-23699-4
10.1039/D1EE03097C
10.1038/nmat3143
10.1039/D1EE00806D
10.1016/j.apcatb.2019.117909
10.1126/science.aar6611
10.1039/c2nr31409f
10.1021/jacs.7b03516
10.1016/j.apcatb.2018.05.041
10.1021/jacs.6b11291
10.1038/s41560-018-0296-8
10.1021/acscatal.0c00297
10.1103/PhysRevLett.77.3865
10.1038/s41929-020-0440-2
10.1002/cite.200700029
10.1126/sciadv.aba6586
10.1016/j.apcatb.2021.120648
10.1039/D0EE01754J
10.1021/acscatal.9b05260
10.1021/acscatal.9b02179
10.1038/s41929-019-0252-4
10.1021/acscatal.1c01525
10.1016/j.apcatb.2021.121021
10.1021/acs.est.8b02743
10.1021/jacs.0c12418
10.1002/anie.202002394
10.1002/anie.200705828
10.1021/jacs.9b13347
10.1002/aenm.201903038
10.1126/sciadv.aat5778
10.1021/cr8003696
10.1021/jacs.7b00452
10.1038/s41586-019-1260-x
10.1126/science.abg2371
10.1016/j.cej.2020.126033
10.1038/s41467-019-13685-2
10.1039/D1EE00594D
10.1126/science.1135941
10.1021/jacs.0c00418
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Aug 5, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 5, 2022
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2022.121346
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2022_121346
S0926337322002879
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-a8ed861a98e0af50819eee5c20eddc674079c00602f82a51663133e64b5324cf3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 04:38:34 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Tue Jul 01 04:35:19 EDT 2025
Sat Mar 02 16:01:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Single-atom alloys
Cu vacancy
Nitrate reduction
Synthetic ammonia
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-a8ed861a98e0af50819eee5c20eddc674079c00602f82a51663133e64b5324cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2667261775
PQPubID 2045281
ParticipantIDs proquest_journals_2667261775
crossref_citationtrail_10_1016_j_apcatb_2022_121346
crossref_primary_10_1016_j_apcatb_2022_121346
elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Birdja, Pérez-Gallent, Figueiredo, Göttle, Calle-Vallejo, Koper (bib23) 2019; 4
Mihaylov, Knözinger, Hadjiivanov, Gates (bib50) 2007; 79
Zhang, Ma, Song, He, Waite (bib69) 2018; 52
Wang, Xu, Wang, Huang, Li, Li, Wicks, Luo, Nam, Tan, Ding, Wu, Lum, Dinh, Sinton, Zheng, Sargent (bib16) 2020; 142
Stamenkovic, Fowler, Mun, Wang, Ross, Lucas, Marković (bib58) 2007; 315
Foster, Bakovic, Duda, Maheshwari, Milton, Minteer, Janik, Renner, Greenlee (bib3) 2018; 1
Zhang, Watanabe, Okumura, Haruta, Toshima (bib33) 2012; 11
Ye, Chen, Zhang, Chen, Peng, Yang, Zheng, Li, Ren, Cao, Xue, Qiu, Zhang, Liu (bib18) 2022; 15
Wang, Zhou, Jia, Yu, Zhang (bib13) 2020; 59
Boucher, Zugic, Cladaras, Kammert, Marcinkowski, Lawton, Sykes, Flytzani-Stephanopoulos (bib32) 2013; 15
Zhang, Wen, Luo, Ren, Zhu, Gao, Dou, Sun, Feng, Bai, Yu, Chen (bib43) 2021; 143
Su, Kuan, Liu, Huang (bib11) 2019; 257
Cerrón-Calle, Fajardo, Sánchez-Sánchez, Garcia-Segura (bib14) 2021; 302
Cai, Guo, Ibrahim, Zhang, Sun (bib66) 2021; 299
Hannagan, Giannakakis, Flytzani-Stephanopoulos, Sykes (bib27) 2020; 120
Cao, Xu, Cheng (bib40) 2020; 10
Park, Baker, Somorjai (bib44) 2015; 115
Wu, Luo, Han, Peng, Zhao, Chen, Peng, Liu, de Groot, Tan (bib65) 2019; 5
Bae, Stewart, Gewirth (bib24) 2007; 129
Wang, Li, Zhang (bib26) 2018; 2
Suryanto, Du, Wang, Chen, Simonov, MacFarlane (bib6) 2019; 2
Luc, Fu, Shi, Lv, Jouny, Ko, Xu, Tu, Hu, Wu, Yue, Liu, Jiao, Kang (bib30) 2019; 2
Garcia-Segura, Lanzarini-Lopes, Hristovski, Westerhoff (bib5) 2018; 236
Najdovski, Selvakannan, Bhargava, O'Mullane (bib46) 2012; 4
Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (bib59) 2018; 360
Wu, Karamad, Yong, Huang, Cullen, Zhu, Xia, Xiao, Shakouri, Chen, Kim, Xia, Heck, Hu, Wong, Li, Gates, Siahrostami, Wang (bib17) 2021; 12
Liu, Park, Chen, Qiu, Cheng, Srivastava, Gu, Shanks, Roling, Li (bib56) 2021; 11
Jia, Wang, Wang, Ling, Yu, Zhang (bib7) 2020; 10
Kim, Resasco, Yu, Asiri, Yang (bib53) 2014; 5
Long, Li, Liu, Chen, Zheng, Gao, He, Chen, Qi, Song, Jiang, Zhu, Xiong (bib42) 2017; 139
Guo, Zhang, Zhang, Zhao, Yang, Huang, Dong, Zhi (bib19) 2021; 14
Xu, Ren, Ren, Wang, Wang, Li, Wang, Wang (bib20) 2022; 306
Liu, Pang, Zhang, De Luna, Voznyy, Xu, Zheng, Dinh, Fan, Cao, de Arquer, Safaei, Mepham, Klinkova, Kumacheva, Filleter, Sinton, Kelley, Sargent (bib54) 2016; 537
De Gregorio, Burdyny, Loiudice, Iyengar, Smith, Buonsanti (bib41) 2020; 10
Zhang, Li, Li, Song, Liu (bib22) 2022; 119
Zhang, Dai, Li, Yin, Hoffmann (bib61) 2020; 1
Chen, Yuan, Jiang, Ren, Ding, Ma, Wu, Lu, Wang (bib62) 2020; 5
Wang, Ou, Wicks, Xie, Wang, Li, Tam, Ren, Howe, Wang, Ozden, Finfrock, Xu, Li, Rasouli, Bertens, Ip, Graetzel, Sinton, Sargent (bib25) 2021; 12
Gong, Zhong, He, Liu, Chen, Zhou, Zhang, Kang, Chen (bib8) 2022; 305
Liu, Richards, Singh, Goldsmith (bib12) 2019; 9
Zhao, Li, Zhang, Chen, Xu, Yang, Zhang, Hu (bib21) 2022; 424
Suryanto, Matuszek, Choi, Hodgetts, Du, Bakker, Kang, Cherepanov, Simonov, MacFarlane (bib1) 2021; 372
Feng, Yu, Tang, Wang, Dong, Ni, Tang, Tang, Zhu, Liang (bib28) 2021; 297
Dinh, Jain, de Arquer, De Luna, Li, Wang, Zheng, Cai, Gregory, Voznyy, Zhang, Liu, Sinton, Crumlin, Sargent (bib64) 2019; 4
Zhang, Cui, Feng, Chen, Wang, Wang, Zhang, Zheng, Hong, Wei (bib52) 2019; 10
Jiang, Liu, Hung, Zhou, Zheng (bib38) 2020; 15
Zheng, Jiao, Zhu, Li, Han, Chen, Jaroniec, Qiao (bib63) 2016; 138
Watt, Chrisp (bib34) 1952; 24
Zhang, Chen, Zhang, Yin, Yang (bib57) 2020; 401
Rosca, Duca, de Groot, Koper (bib9) 2009; 109
Wang, Huang, Xi, Xu, Wang (bib68) 2020; 59
Fu, Zhao, Hu, He, Yu, Li, Tu, Qian, Yue, Wasielewski, Kang (bib31) 2020; 19
Zhang, Han, Zhu, Zhang, Li, Gao, Wu, Yang, Liu, Baaziz, Ersen, Gu, Miller, Liu (bib49) 2020; 3
Zhang, Huang, Xiao, Yu, Shuai, An, Zhang, Qiu, Ren, Yu (bib39) 2020; 142
Kim, Xie, Becknell, Yu, Karamad, Chan, Crumlin, Norskov, Yang (bib47) 2017; 139
Monteiro, Goyal, Moerland, Koper (bib60) 2021; 11
Hawtof, Ghosh, Guarr, Xu, Sankaran, Renner (bib4) 2019; 5
Daiyan, Tran-Phu, Kumar, Iputera, Tong, Leverett, Khan, Asghar Esmailpour, Jalili, Lim, Tricoli, Liu, Lu, Lovell, Amal (bib10) 2021; 14
Guo, Xue, Bao, Wang, Sun, Song, Ge, Zhang, Huang, He, Wang (bib29) 2020; 59
Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr, Statt, Blair, Mezzavilla, Kibsgaard, Vesborg, Cargnello, Bent, Jaramillo, Stephens, Nørskov, Chorkendorff (bib2) 2019; 570
Kresse, Furthmüller (bib36) 1996; 6
Kresse, Furthmüller (bib35) 1996; 54
Perdew, Burke, Ernzerhof (bib37) 1996; 77
Yang, Qian, Li, Zhang, Mu, Do, Zhou, Dong, Yan, Qin (bib55) 2020; 6
Li, Zhan, Yang, Quan, Mao, Liu, Wang, Lei, Li, Chan, Xu, Shi, Du, Hao, Wong, Wang, Dou, Zhang, Yu (bib15) 2020; 142
Jiang, Liu, Hung, Zhou, Qin, Zhang, Liu, Gu, Chen, Fu, Zheng (bib48) 2020; 15
Si, Flytzani-Stephanopoulos (bib45) 2008; 47
Ouyang, Papanikolaou, Boubnov, Hoffman, Giannakakis, Bare, Stamatakis, Flytzani-Stephanopoulos, Sykes (bib51) 2021; 12
Liu, Jiao, Li, Stracensky, Sun, Mukerjee, Jia (bib67) 2020; 13
Zhang (10.1016/j.apcatb.2022.121346_bib61) 2020; 1
Rosca (10.1016/j.apcatb.2022.121346_bib9) 2009; 109
Wu (10.1016/j.apcatb.2022.121346_bib17) 2021; 12
Daiyan (10.1016/j.apcatb.2022.121346_bib10) 2021; 14
Zhang (10.1016/j.apcatb.2022.121346_bib49) 2020; 3
Liu (10.1016/j.apcatb.2022.121346_bib54) 2016; 537
Watt (10.1016/j.apcatb.2022.121346_bib34) 1952; 24
Wang (10.1016/j.apcatb.2022.121346_bib16) 2020; 142
Jia (10.1016/j.apcatb.2022.121346_bib7) 2020; 10
Ye (10.1016/j.apcatb.2022.121346_bib18) 2022; 15
Cao (10.1016/j.apcatb.2022.121346_bib40) 2020; 10
Wu (10.1016/j.apcatb.2022.121346_bib65) 2019; 5
Suryanto (10.1016/j.apcatb.2022.121346_bib1) 2021; 372
Cerrón-Calle (10.1016/j.apcatb.2022.121346_bib14) 2021; 302
Chen (10.1016/j.apcatb.2022.121346_bib62) 2020; 5
Kim (10.1016/j.apcatb.2022.121346_bib53) 2014; 5
Garcia-Segura (10.1016/j.apcatb.2022.121346_bib5) 2018; 236
Li (10.1016/j.apcatb.2022.121346_bib15) 2020; 142
Si (10.1016/j.apcatb.2022.121346_bib45) 2008; 47
Jiang (10.1016/j.apcatb.2022.121346_bib48) 2020; 15
Wang (10.1016/j.apcatb.2022.121346_bib68) 2020; 59
Long (10.1016/j.apcatb.2022.121346_bib42) 2017; 139
Zhao (10.1016/j.apcatb.2022.121346_bib21) 2022; 424
Monteiro (10.1016/j.apcatb.2022.121346_bib60) 2021; 11
Guo (10.1016/j.apcatb.2022.121346_bib29) 2020; 59
Ouyang (10.1016/j.apcatb.2022.121346_bib51) 2021; 12
Wang (10.1016/j.apcatb.2022.121346_bib26) 2018; 2
Andersen (10.1016/j.apcatb.2022.121346_bib2) 2019; 570
Perdew (10.1016/j.apcatb.2022.121346_bib37) 1996; 77
Feng (10.1016/j.apcatb.2022.121346_bib28) 2021; 297
Guo (10.1016/j.apcatb.2022.121346_bib19) 2021; 14
Birdja (10.1016/j.apcatb.2022.121346_bib23) 2019; 4
Boucher (10.1016/j.apcatb.2022.121346_bib32) 2013; 15
Zhang (10.1016/j.apcatb.2022.121346_bib33) 2012; 11
Liu (10.1016/j.apcatb.2022.121346_bib56) 2021; 11
Mihaylov (10.1016/j.apcatb.2022.121346_bib50) 2007; 79
Park (10.1016/j.apcatb.2022.121346_bib44) 2015; 115
Liu (10.1016/j.apcatb.2022.121346_bib12) 2019; 9
Stamenkovic (10.1016/j.apcatb.2022.121346_bib58) 2007; 315
Zhang (10.1016/j.apcatb.2022.121346_bib57) 2020; 401
Kresse (10.1016/j.apcatb.2022.121346_bib36) 1996; 6
De Gregorio (10.1016/j.apcatb.2022.121346_bib41) 2020; 10
Yang (10.1016/j.apcatb.2022.121346_bib55) 2020; 6
Najdovski (10.1016/j.apcatb.2022.121346_bib46) 2012; 4
Foster (10.1016/j.apcatb.2022.121346_bib3) 2018; 1
Suryanto (10.1016/j.apcatb.2022.121346_bib6) 2019; 2
Gong (10.1016/j.apcatb.2022.121346_bib8) 2022; 305
Jiang (10.1016/j.apcatb.2022.121346_bib38) 2020; 15
Wang (10.1016/j.apcatb.2022.121346_bib13) 2020; 59
Zhang (10.1016/j.apcatb.2022.121346_bib43) 2021; 143
Zheng (10.1016/j.apcatb.2022.121346_bib63) 2016; 138
Hawtof (10.1016/j.apcatb.2022.121346_bib4) 2019; 5
Hannagan (10.1016/j.apcatb.2022.121346_bib27) 2020; 120
Zhang (10.1016/j.apcatb.2022.121346_bib39) 2020; 142
Liu (10.1016/j.apcatb.2022.121346_bib67) 2020; 13
Zhang (10.1016/j.apcatb.2022.121346_bib22) 2022; 119
Kim (10.1016/j.apcatb.2022.121346_bib47) 2017; 139
Dinh (10.1016/j.apcatb.2022.121346_bib64) 2019; 4
Xu (10.1016/j.apcatb.2022.121346_bib20) 2022; 306
Luc (10.1016/j.apcatb.2022.121346_bib30) 2019; 2
Chen (10.1016/j.apcatb.2022.121346_bib59) 2018; 360
Bae (10.1016/j.apcatb.2022.121346_bib24) 2007; 129
Su (10.1016/j.apcatb.2022.121346_bib11) 2019; 257
Cai (10.1016/j.apcatb.2022.121346_bib66) 2021; 299
Fu (10.1016/j.apcatb.2022.121346_bib31) 2020; 19
Kresse (10.1016/j.apcatb.2022.121346_bib35) 1996; 54
Zhang (10.1016/j.apcatb.2022.121346_bib52) 2019; 10
Wang (10.1016/j.apcatb.2022.121346_bib25) 2021; 12
Zhang (10.1016/j.apcatb.2022.121346_bib69) 2018; 52
References_xml – volume: 138
  start-page: 16174
  year: 2016
  end-page: 16181
  ident: bib63
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: bib36
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
– volume: 302
  year: 2021
  ident: bib14
  article-title: Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Appl. Catal. B Environ.
– volume: 2
  start-page: 290
  year: 2019
  end-page: 296
  ident: bib6
  article-title: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia
  publication-title: Nat. Catal.
– volume: 13
  start-page: 3064
  year: 2020
  end-page: 3074
  ident: bib67
  article-title: Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media
  publication-title: Energy Environ. Sci.
– volume: 109
  start-page: 2209
  year: 2009
  end-page: 2244
  ident: bib9
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
– volume: 79
  start-page: 795
  year: 2007
  end-page: 806
  ident: bib50
  article-title: Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO
  publication-title: Chem. Ing. Tech.
– volume: 129
  start-page: 10171
  year: 2007
  end-page: 10180
  ident: bib24
  article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 8431
  year: 2021
  end-page: 8442
  ident: bib56
  article-title: Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia
  publication-title: ACS Catal.
– volume: 47
  start-page: 2884
  year: 2008
  end-page: 2887
  ident: bib45
  article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO
  publication-title: Angew. Chem. Int. Ed.
– volume: 306
  year: 2022
  ident: bib20
  article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu
  publication-title: Appl. Catal. B Environ.
– volume: 401
  year: 2020
  ident: bib57
  article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm
  publication-title: Chem. Eng. J.
– volume: 142
  start-page: 5702
  year: 2020
  end-page: 5708
  ident: bib16
  article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: bib35
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
– volume: 119
  year: 2022
  ident: bib22
  article-title: High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: bib26
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  ident: bib15
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 4486
  year: 2017
  end-page: 4492
  ident: bib42
  article-title: Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 7052
  year: 2019
  end-page: 7064
  ident: bib12
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: ACS Catal.
– volume: 52
  start-page: 14275
  year: 2018
  end-page: 14285
  ident: bib69
  article-title: Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system
  publication-title: Environ. Sci. Technol.
– volume: 120
  start-page: 12044
  year: 2020
  end-page: 12088
  ident: bib27
  article-title: Single-atom alloy catalysis
  publication-title: Chem. Rev.
– volume: 297
  year: 2021
  ident: bib28
  article-title: Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure
  publication-title: Appl. Catal. B Environ.
– volume: 24
  start-page: 2006
  year: 1952
  end-page: 2008
  ident: bib34
  article-title: Spectrophotometric method for determination of hydrazine
  publication-title: Anal. Chem.
– volume: 14
  start-page: 3588
  year: 2021
  end-page: 3598
  ident: bib10
  article-title: Nitrate reduction to ammonium: from CuO defect engineering to waste NO
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2020
  ident: bib40
  article-title: Construction of defect‐rich RhCu nanotubes with highly active Rh
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 5350
  year: 2020
  end-page: 5354
  ident: bib13
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 3938
  year: 2021
  end-page: 3944
  ident: bib19
  article-title: Pd doping-weakened Intermediate adsorption to promote electrocatalytic nitrate reduction on TiO
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3387
  year: 2021
  ident: bib25
  article-title: Gold-in-copper at low *CO coverage enables efficient electromethanation of CO
  publication-title: Nat. Commun.
– volume: 59
  start-page: 19162
  year: 2020
  end-page: 19167
  ident: bib68
  article-title: Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  ident: bib2
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
– volume: 19
  year: 2020
  ident: bib31
  article-title: Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets
  publication-title: Appl. Mater. Today
– volume: 142
  start-page: 11417
  year: 2020
  end-page: 11427
  ident: bib39
  article-title: Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 12187
  year: 2013
  end-page: 12196
  ident: bib32
  article-title: Single atom alloy surface analogs in Pd
  publication-title: Phys. Chem. Chem. Phys.
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  ident: bib54
  article-title: Enhanced electrocatalytic CO
  publication-title: Nature
– volume: 11
  start-page: 14328
  year: 2021
  end-page: 14335
  ident: bib60
  article-title: Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media
  publication-title: ACS Catal.
– volume: 299
  year: 2021
  ident: bib66
  article-title: A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition
  publication-title: Appl. Catal. B Environ.
– volume: 12
  start-page: 1549
  year: 2021
  ident: bib51
  article-title: Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts
  publication-title: Nat. Commun.
– volume: 372
  start-page: 1187
  year: 2021
  end-page: 1191
  ident: bib1
  article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle
  publication-title: Science
– volume: 15
  start-page: 848
  year: 2020
  end-page: 853
  ident: bib38
  article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 49
  year: 2012
  end-page: 52
  ident: bib33
  article-title: Catalytically highly active top gold atom on palladium nanocluster
  publication-title: Nat. Mater.
– volume: 15
  start-page: 848
  year: 2020
  end-page: 853
  ident: bib48
  article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts
  publication-title: Nat. Nanotechnol.
– volume: 315
  start-page: 493
  year: 2007
  end-page: 497
  ident: bib58
  article-title: Improved oxygen reduction activity on Pt
  publication-title: Science
– volume: 5
  start-page: 192
  year: 2019
  end-page: 199
  ident: bib65
  article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 13778
  year: 2020
  end-page: 13784
  ident: bib29
  article-title: Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 4948
  year: 2014
  ident: bib53
  article-title: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles
  publication-title: Nat. Commun.
– volume: 6
  start-page: eaba6586
  year: 2020
  ident: bib55
  article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution
  publication-title: Sci. Adv.
– volume: 4
  start-page: 107
  year: 2019
  end-page: 114
  ident: bib64
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
– volume: 5
  start-page: eaat5778
  year: 2019
  ident: bib4
  article-title: Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system
  publication-title: Sci. Adv.
– volume: 424
  year: 2022
  ident: bib21
  article-title: Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage
  publication-title: J. Hazard. Mater.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib52
  article-title: Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis
  publication-title: Nat. Commun.
– volume: 305
  year: 2022
  ident: bib8
  article-title: Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  ident: bib62
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst
  publication-title: Nat. Energy
– volume: 3
  start-page: 411
  year: 2020
  end-page: 417
  ident: bib49
  article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO
  publication-title: Nat. Catal.
– volume: 12
  start-page: 2870
  year: 2021
  ident: bib17
  article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst
  publication-title: Nat. Commun.
– volume: 115
  start-page: 2781
  year: 2015
  end-page: 2817
  ident: bib44
  article-title: Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions
  publication-title: Chem. Rev.
– volume: 143
  start-page: 6855
  year: 2021
  end-page: 6864
  ident: bib43
  article-title: “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO
  publication-title: J. Am. Chem. Soc.
– volume: 236
  start-page: 546
  year: 2018
  end-page: 568
  ident: bib5
  article-title: Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications
  publication-title: Appl. Catal. B Environ.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib37
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: bib59
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
– volume: 2
  start-page: 423
  year: 2019
  end-page: 430
  ident: bib30
  article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate
  publication-title: Nat. Catal.
– volume: 4
  start-page: 6298
  year: 2012
  ident: bib46
  article-title: Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis
  publication-title: Nanoscale
– volume: 15
  start-page: 760
  year: 2022
  end-page: 770
  ident: bib18
  article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib61
  article-title: Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production
  publication-title: Commun. Mater.
– volume: 257
  year: 2019
  ident: bib11
  article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 4854
  year: 2020
  end-page: 4862
  ident: bib41
  article-title: Facet-dependent selectivity of Cu catalysts in electrochemical CO
  publication-title: ACS Catal.
– volume: 139
  start-page: 8329
  year: 2017
  end-page: 8336
  ident: bib47
  article-title: Electrochemical Activation of CO
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 3533
  year: 2020
  end-page: 3540
  ident: bib7
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO
  publication-title: ACS Catal.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  ident: bib23
  article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
  publication-title: Nat. Energy
– volume: 1
  start-page: 490
  year: 2018
  end-page: 500
  ident: bib3
  article-title: Catalysts for nitrogen reduction to ammonia
  publication-title: Nat. Catal.
– volume: 59
  start-page: 5350
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib13
  article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915992
– volume: 15
  start-page: 12187
  year: 2013
  ident: 10.1016/j.apcatb.2022.121346_bib32
  article-title: Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51538a
– volume: 1
  start-page: 490
  year: 2018
  ident: 10.1016/j.apcatb.2022.121346_bib3
  article-title: Catalysts for nitrogen reduction to ammonia
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0092-7
– volume: 115
  start-page: 2781
  year: 2015
  ident: 10.1016/j.apcatb.2022.121346_bib44
  article-title: Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions
  publication-title: Chem. Rev.
  doi: 10.1021/cr400311p
– volume: 5
  start-page: 192
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib65
  article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02374
– volume: 59
  start-page: 19162
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib68
  article-title: Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008759
– volume: 537
  start-page: 382
  year: 2016
  ident: 10.1016/j.apcatb.2022.121346_bib54
  article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 4
  start-page: 732
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib23
  article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0450-y
– volume: 24
  start-page: 2006
  year: 1952
  ident: 10.1016/j.apcatb.2022.121346_bib34
  article-title: Spectrophotometric method for determination of hydrazine
  publication-title: Anal. Chem.
  doi: 10.1021/ac60072a044
– volume: 5
  start-page: 4948
  year: 2014
  ident: 10.1016/j.apcatb.2022.121346_bib53
  article-title: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5948
– volume: 5
  start-page: 605
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib62
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 306
  year: 2022
  ident: 10.1016/j.apcatb.2022.121346_bib20
  article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2022.121094
– volume: 142
  start-page: 11417
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib39
  article-title: Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01562
– volume: 2
  start-page: 423
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib30
  article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0269-8
– volume: 12
  start-page: 2870
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib17
  article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.apcatb.2022.121346_bib35
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 120
  start-page: 12044
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib27
  article-title: Single-atom alloy catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00078
– volume: 129
  start-page: 10171
  year: 2007
  ident: 10.1016/j.apcatb.2022.121346_bib24
  article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071330n
– volume: 297
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib28
  article-title: Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120478
– volume: 15
  start-page: 848
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib48
  article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0746-x
– volume: 2
  start-page: 65
  year: 2018
  ident: 10.1016/j.apcatb.2022.121346_bib26
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.apcatb.2022.121346_bib36
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 424
  year: 2022
  ident: 10.1016/j.apcatb.2022.121346_bib21
  article-title: Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127319
– volume: 12
  start-page: 1549
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib51
  article-title: Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21555-z
– volume: 11
  start-page: 14328
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib60
  article-title: Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04268
– volume: 1
  start-page: 1
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib61
  article-title: Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-020-00068-0
– volume: 12
  start-page: 3387
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib25
  article-title: Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23699-4
– volume: 15
  start-page: 760
  year: 2022
  ident: 10.1016/j.apcatb.2022.121346_bib18
  article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03097C
– volume: 11
  start-page: 49
  year: 2012
  ident: 10.1016/j.apcatb.2022.121346_bib33
  article-title: Catalytically highly active top gold atom on palladium nanocluster
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3143
– volume: 119
  year: 2022
  ident: 10.1016/j.apcatb.2022.121346_bib22
  article-title: High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 3938
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib19
  article-title: Pd doping-weakened Intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00806D
– volume: 257
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib11
  article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117909
– volume: 19
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib31
  article-title: Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets
  publication-title: Appl. Mater. Today
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: 10.1016/j.apcatb.2022.121346_bib59
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 4
  start-page: 6298
  year: 2012
  ident: 10.1016/j.apcatb.2022.121346_bib46
  article-title: Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis
  publication-title: Nanoscale
  doi: 10.1039/c2nr31409f
– volume: 302
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib14
  article-title: Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia
  publication-title: Appl. Catal. B Environ.
– volume: 139
  start-page: 8329
  year: 2017
  ident: 10.1016/j.apcatb.2022.121346_bib47
  article-title: Electrochemical Activation of CO2 through atomic ordering transformations of AuCu nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03516
– volume: 236
  start-page: 546
  year: 2018
  ident: 10.1016/j.apcatb.2022.121346_bib5
  article-title: Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.05.041
– volume: 138
  start-page: 16174
  year: 2016
  ident: 10.1016/j.apcatb.2022.121346_bib63
  article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11291
– volume: 4
  start-page: 107
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib64
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 10
  start-page: 4854
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib41
  article-title: Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00297
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apcatb.2022.121346_bib37
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 3
  start-page: 411
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib49
  article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0440-2
– volume: 79
  start-page: 795
  year: 2007
  ident: 10.1016/j.apcatb.2022.121346_bib50
  article-title: Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.200700029
– volume: 6
  start-page: eaba6586
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib55
  article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba6586
– volume: 299
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib66
  article-title: A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120648
– volume: 13
  start-page: 3064
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib67
  article-title: Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01754J
– volume: 10
  start-page: 3533
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib7
  article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05260
– volume: 9
  start-page: 7052
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib12
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02179
– volume: 2
  start-page: 290
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib6
  article-title: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0252-4
– volume: 11
  start-page: 8431
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib56
  article-title: Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01525
– volume: 305
  year: 2022
  ident: 10.1016/j.apcatb.2022.121346_bib8
  article-title: Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.121021
– volume: 52
  start-page: 14275
  year: 2018
  ident: 10.1016/j.apcatb.2022.121346_bib69
  article-title: Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02743
– volume: 143
  start-page: 6855
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib43
  article-title: “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12418
– volume: 59
  start-page: 13778
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib29
  article-title: Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002394
– volume: 47
  start-page: 2884
  year: 2008
  ident: 10.1016/j.apcatb.2022.121346_bib45
  article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705828
– volume: 142
  start-page: 5702
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib16
  article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 10
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib40
  article-title: Construction of defect‐rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903038
– volume: 5
  start-page: eaat5778
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib4
  article-title: Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat5778
– volume: 109
  start-page: 2209
  year: 2009
  ident: 10.1016/j.apcatb.2022.121346_bib9
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 139
  start-page: 4486
  year: 2017
  ident: 10.1016/j.apcatb.2022.121346_bib42
  article-title: Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00452
– volume: 570
  start-page: 504
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib2
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 372
  start-page: 1187
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib1
  article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle
  publication-title: Science
  doi: 10.1126/science.abg2371
– volume: 15
  start-page: 848
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib38
  article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0746-x
– volume: 401
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib57
  article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126033
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.apcatb.2022.121346_bib52
  article-title: Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13685-2
– volume: 14
  start-page: 3588
  year: 2021
  ident: 10.1016/j.apcatb.2022.121346_bib10
  article-title: Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00594D
– volume: 315
  start-page: 493
  year: 2007
  ident: 10.1016/j.apcatb.2022.121346_bib58
  article-title: Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability
  publication-title: Science
  doi: 10.1126/science.1135941
– volume: 142
  start-page: 7036
  year: 2020
  ident: 10.1016/j.apcatb.2022.121346_bib15
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
SSID ssj0002328
Score 2.6993043
Snippet Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121346
SubjectTerms Alloys
Ammonia
Catalysts
Chemical reduction
Copper
Cu vacancy
Decay
Distillation
Electrocatalysis
Gold
Nitrate reduction
Single-atom alloys
Synthetic ammonia
Wastewater
Title Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys
URI https://dx.doi.org/10.1016/j.apcatb.2022.121346
https://www.proquest.com/docview/2667261775
Volume 310
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V5QAcEA1UFErlAwc4uEn82s0xilKlregFKpWT5bXHUlCbRs3m0Au_nZl9UEBClTh6ZVsrz9ue-Qbggw5Zm4RWkvV20rioZVVaJ9EmVY5NcAa53vnzhVtcmrMre7UDs74WhtMqO93f6vRGW3dfht1pDtfL5fDLaKKc1gVxJAcOBRfxGVMwlx__eEjzII-h0cY0WfLsvnyuyfEK6xjqiqJEpY4bbDP3L_P0l6JurM_JS3jRuY1i2v7ZHuzgagBPZ323tgE8_w1YcAD784f6NVrWCfDmFXybt21vmlube9pMkEgzWoS4YwxXppKob0Vg7lwGQaOEudWJYrodz7biI6mtT4JvGK5RUsR-I_jp_n7zGi5P5l9nC9l1V5CR5LaWocRUunGYlDgK2bJrgIg2qhGmFF1Bkd4kMlyLyqUKREmnKZ5FZypLTljMeh92V7crfAMiqZQzeRYpmmTy2FWTUUVGEFGrShcqH4DuD9XHDnqcO2Bc-z7H7LtvSeGZFL4lxQHIX6vWLfTGI_OLnl7-DxbyZB0eWXnYk9d3Irzx5LkUDFdf2Lf_vfE7eMajJmHQHsJufbfF9-TE1NVRw6VH8GR6er64-AmuxO_d
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RONAeqhKKoKXgQw_lYJL4tbtHFAUFClwKEj1ZXnssBUGIyObApb-9432UthJC4ri7trXyvO2ZbwC-ShelCqg5WW_DlfGSl7k2HHUQ-VA5ozDVO59fmMmVOr3W1ysw6mphUlplq_sbnV5r6_ZNv93N_nw67f8YFMJImRFHpsAhK97AmiLxTW0MDn895XmQy1CrYxrN0_Cufq5O8nJz76qSwkQhDmtwM_OcffpPU9fm5_gDvG_9RnbU_NoGrOCsB-ujrl1bD979hSzYg63xUwEbTWsleLEJP8dN35v62OaRFmMk0wkugj0kENdEJlbdM5fYc-oYPQWMjVJkR8vhaMm-kd46YOmI4RY5hex3LN3dPy4-wtXx-HI04W17Be5JcCvucgy5Gboix4GLOvkGiKi9GGAI3mQU6hU-4bWImAtHpDSSAlo0qtTkhfkot2B1dj_DbWBBhBjJtQheBRWHpiwGJVlBRClKmYm4A7LbVOtb7PHUAuPWdklmN7YhhU2ksA0pdoD_mTVvsDdeGJ919LL_8JAl8_DCzN2OvLaV4YUl1yVLePWZ_vTqhfdhfXJ5fmbPTi6-f4a36UudPah3YbV6WOIX8miqcq_m2N8vufFr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+nitrate+reduction+to+ammonia+on+defective+Au1Cu+%28111%29+single-atom+alloys&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Yuanzheng&rft.au=Chen%2C+Xiang&rft.au=Wang%2C+Weilai&rft.au=Yin%2C+Lifeng&rft.date=2022-08-05&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=310&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121346&rft.externalDocID=S0926337322002879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon