Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys
Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a pr...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 310; p. 121346 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.08.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface.
[Display omitted]
●Au1Cu single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs) is reported.●A highly NH3 Faradaic efficiency of 98.7% is obtained on the VCu-Au1Cu SAAs.●VCu-Au1Cu SAAs promoted H2O dissociation to *H that boost NO3–-to-NH3 conversion.●DFT revealed the role of single-atom and vacancy defect on catalytic performance. |
---|---|
AbstractList | Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface. Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface. [Display omitted] ●Au1Cu single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs) is reported.●A highly NH3 Faradaic efficiency of 98.7% is obtained on the VCu-Au1Cu SAAs.●VCu-Au1Cu SAAs promoted H2O dissociation to *H that boost NO3–-to-NH3 conversion.●DFT revealed the role of single-atom and vacancy defect on catalytic performance. |
ArticleNumber | 121346 |
Author | Zhang, Yuanzheng Yin, Lifeng Crittenden, John C. Chen, Xiang Wang, Weilai |
Author_xml | – sequence: 1 givenname: Yuanzheng surname: Zhang fullname: Zhang, Yuanzheng organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China – sequence: 2 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China – sequence: 3 givenname: Weilai surname: Wang fullname: Wang, Weilai organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China – sequence: 4 givenname: Lifeng surname: Yin fullname: Yin, Lifeng email: lfyin@bnu.edu.cn, yinlifeng@gmail.com organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China – sequence: 5 givenname: John C. surname: Crittenden fullname: Crittenden, John C. organization: State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China |
BookMark | eNqFkE1LAzEQhoMo2Fb_gYeAFz1snSS72dSDIKV-gOBFD55CzM5KynZTk6zQf2_KevKgp2Fgnnd4nyk57H2PhJwxmDNg8mo9N1tr0vucA-dzxpko5QGZMFWLQiglDskEFlwWQtTimExjXAMAF1xNyNuqQ5uCz7jpdslZ2rsUTEIasBlscr6nyVOz2fjeGZq3BttMuC-ktwNbDvSCMXZJo-s_OixM8htqus7v4gk5ak0X8fRnzsjr3epl-VA8Pd8_Lm-fClsCpMIobJRkZqEQTFuBYgtErCwHbBor6xLqhQWQwFvFTcWkFEwIlOV7JXhpWzEj52PuNvjPAWPSaz-EPr_UXMqaS1bXVb66Hq9s8DEGbLV1yezr5bau0wz0XqVe61Gl3qvUo8oMl7_gbXAbE3b_YTcjhrn-l8Ogo3XYW2xcyAp1493fAd_7mpBW |
CitedBy_id | crossref_primary_10_1002_cctc_202400415 crossref_primary_10_1039_D3QI00865G crossref_primary_10_1021_acs_inorgchem_3c02334 crossref_primary_10_1039_D3QM00114H crossref_primary_10_1039_D2EE04095F crossref_primary_10_1002_adma_202209855 crossref_primary_10_1021_acs_jpcc_3c01242 crossref_primary_10_1002_aenm_202302274 crossref_primary_10_1021_acscatal_4c01398 crossref_primary_10_1007_s12274_023_6261_2 crossref_primary_10_1002_adma_202306633 crossref_primary_10_1002_cssc_202500017 crossref_primary_10_1016_j_apsusc_2023_156440 crossref_primary_10_1002_aenm_202402301 crossref_primary_10_1002_ange_202316910 crossref_primary_10_1016_j_seppur_2024_127050 crossref_primary_10_1016_j_apcatb_2022_121683 crossref_primary_10_1016_j_apcatb_2024_123864 crossref_primary_10_1039_D3CY01441J crossref_primary_10_1021_acsnano_2c07911 crossref_primary_10_1002_adma_202312746 crossref_primary_10_1016_j_apcatb_2024_123980 crossref_primary_10_1002_ange_202420903 crossref_primary_10_1016_j_apcatb_2024_123862 crossref_primary_10_1016_j_nanoen_2023_108840 crossref_primary_10_2139_ssrn_4172820 crossref_primary_10_1007_s11244_024_01949_1 crossref_primary_10_1016_j_jhazmat_2025_137553 crossref_primary_10_1002_idm2_12152 crossref_primary_10_1021_acs_est_4c04014 crossref_primary_10_1016_j_nanoen_2022_107800 crossref_primary_10_1021_acscatal_4c05292 crossref_primary_10_1002_aic_18654 crossref_primary_10_1002_adfm_202410941 crossref_primary_10_1039_D4NR02387K crossref_primary_10_1021_acsami_4c01739 crossref_primary_10_1021_acscatal_4c06705 crossref_primary_10_1080_21663831_2023_2209156 crossref_primary_10_1039_D4CY01511H crossref_primary_10_1002_adfm_202425611 crossref_primary_10_1016_j_apcatb_2022_122192 crossref_primary_10_1016_j_jece_2024_112348 crossref_primary_10_1002_tcr_202400206 crossref_primary_10_1002_ange_202406046 crossref_primary_10_1007_s11426_022_1419_y crossref_primary_10_1016_j_jcis_2024_01_151 crossref_primary_10_1016_j_mtcata_2023_100009 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1007_s43979_023_00055_7 crossref_primary_10_1016_j_apcatb_2022_121548 crossref_primary_10_1021_acsestengg_3c00207 crossref_primary_10_1002_cctc_202301545 crossref_primary_10_1039_D3SE01024D crossref_primary_10_15240_tul_001_2016_2_014 crossref_primary_10_1002_chem_202303249 crossref_primary_10_1016_j_checat_2022_11_016 crossref_primary_10_1002_ange_202303483 crossref_primary_10_1007_s12274_024_6478_8 crossref_primary_10_1016_j_nanoen_2025_110708 crossref_primary_10_1007_s40843_023_2678_5 crossref_primary_10_1002_adfm_202308072 crossref_primary_10_1002_adfm_202401287 crossref_primary_10_1016_j_nanoen_2025_110843 crossref_primary_10_1016_j_watres_2023_120256 crossref_primary_10_1007_s11244_024_01933_9 crossref_primary_10_1038_s41467_024_47025_w crossref_primary_10_1002_cctc_202401137 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_26599_NR_2025_94907135 crossref_primary_10_1002_adfm_202419248 crossref_primary_10_1002_cctc_202301641 crossref_primary_10_1016_j_apcatb_2023_122473 crossref_primary_10_1002_anie_202420903 crossref_primary_10_1016_j_jece_2024_115144 crossref_primary_10_1021_acsnano_3c05946 crossref_primary_10_1039_D4TA07470J crossref_primary_10_1016_j_chempr_2024_03_024 crossref_primary_10_1039_D2TA04295A crossref_primary_10_1002_adfm_202408704 crossref_primary_10_1016_j_apcatb_2023_122687 crossref_primary_10_1002_aenm_202203891 crossref_primary_10_1002_aesr_202300173 crossref_primary_10_1016_j_jhazmat_2024_134522 crossref_primary_10_1016_j_apcatb_2024_124387 crossref_primary_10_1016_j_cej_2023_148152 crossref_primary_10_1039_D4TA04389H crossref_primary_10_1016_j_ijhydene_2025_01_323 crossref_primary_10_1002_aenm_202303863 crossref_primary_10_1021_acssuschemeng_4c04572 crossref_primary_10_1021_acsaem_3c02892 crossref_primary_10_2139_ssrn_4156149 crossref_primary_10_1002_adsu_202400934 crossref_primary_10_1039_D4SC05936K crossref_primary_10_1007_s12274_023_5402_y crossref_primary_10_1039_D3TA04385A crossref_primary_10_1039_D3DT01412F crossref_primary_10_1016_j_apcatb_2024_123967 crossref_primary_10_1021_acssuschemeng_3c07969 crossref_primary_10_1016_j_cej_2024_153108 crossref_primary_10_1039_D3NR05254K crossref_primary_10_1016_j_apcatb_2024_124252 crossref_primary_10_1039_D4EY00002A crossref_primary_10_1016_j_chemosphere_2024_143707 crossref_primary_10_1016_j_apcatb_2022_121981 crossref_primary_10_1002_adfm_202502073 crossref_primary_10_1039_D3QM01038D crossref_primary_10_1039_D2TA04011E crossref_primary_10_1002_ange_202303327 crossref_primary_10_1016_j_materresbull_2024_113079 crossref_primary_10_1007_s41918_024_00236_7 crossref_primary_10_1021_acs_nanolett_3c02259 crossref_primary_10_1016_j_apsusc_2023_157118 crossref_primary_10_1016_j_apsusc_2023_158208 crossref_primary_10_1021_acs_est_2c04456 crossref_primary_10_1073_pnas_2405236121 crossref_primary_10_1002_smll_202303732 crossref_primary_10_1016_j_surfin_2024_104294 crossref_primary_10_1021_acssuschemeng_4c00394 crossref_primary_10_1016_j_cej_2023_142384 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1007_s10853_024_09966_x crossref_primary_10_20517_cs_2023_74 crossref_primary_10_1002_adfm_202306098 crossref_primary_10_1016_j_jcis_2024_06_020 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1021_acscatal_4c08075 crossref_primary_10_1021_acsami_2c14134 crossref_primary_10_1002_ange_202408758 crossref_primary_10_1016_j_jhazmat_2023_132813 crossref_primary_10_1002_adma_202308653 crossref_primary_10_1007_s42114_024_01105_z crossref_primary_10_1002_anie_202303483 crossref_primary_10_1021_acs_inorgchem_3c02834 crossref_primary_10_1016_j_cej_2023_142931 crossref_primary_10_1002_anie_202406046 crossref_primary_10_1002_anie_202316910 crossref_primary_10_1002_advs_202407250 crossref_primary_10_1002_smll_202407964 crossref_primary_10_1016_j_jece_2023_110927 crossref_primary_10_1088_2058_6272_ad2d10 crossref_primary_10_1016_j_susmat_2024_e00917 crossref_primary_10_1002_smll_202203335 crossref_primary_10_1039_D2DT03720C crossref_primary_10_1002_adfm_202209890 crossref_primary_10_1002_anie_202414314 crossref_primary_10_1016_j_mtsust_2024_101066 crossref_primary_10_1002_adfm_202303480 crossref_primary_10_1016_j_chempr_2023_05_037 crossref_primary_10_1016_j_seppur_2024_127781 crossref_primary_10_1039_D4TA06439A crossref_primary_10_1016_j_checat_2024_101182 crossref_primary_10_1016_j_checat_2024_101060 crossref_primary_10_1016_j_psep_2024_04_146 crossref_primary_10_1016_j_mtener_2024_101610 crossref_primary_10_1002_aenm_202301136 crossref_primary_10_1016_j_jece_2024_114554 crossref_primary_10_1002_adfm_202300512 crossref_primary_10_1039_D3EY00184A crossref_primary_10_1021_acssuschemeng_3c06240 crossref_primary_10_1002_anie_202408758 crossref_primary_10_1016_j_apcatb_2024_124408 crossref_primary_10_1002_adfm_202315324 crossref_primary_10_1002_adma_202311628 crossref_primary_10_1016_j_electacta_2024_144124 crossref_primary_10_1016_j_nanoen_2024_109396 crossref_primary_10_1016_j_scib_2023_07_036 crossref_primary_10_1016_j_jcis_2024_08_105 crossref_primary_10_1002_celc_202400499 crossref_primary_10_1039_D3TA08086B crossref_primary_10_3390_catal15020137 crossref_primary_10_1155_2024_5685619 crossref_primary_10_1002_ange_202414314 crossref_primary_10_1002_anie_202303327 crossref_primary_10_1016_j_ese_2023_100383 crossref_primary_10_1016_j_seppur_2023_125129 crossref_primary_10_1039_D5NJ00143A crossref_primary_10_1002_adfm_202401472 crossref_primary_10_3390_ma16114000 crossref_primary_10_1002_cctc_202400596 crossref_primary_10_1002_smll_202308084 crossref_primary_10_1016_j_mtsust_2024_100866 crossref_primary_10_1016_j_checat_2023_100786 crossref_primary_10_1039_D3NR01089A crossref_primary_10_1016_j_cej_2022_139403 crossref_primary_10_1016_j_electacta_2024_144915 crossref_primary_10_1021_acs_nanolett_3c03962 crossref_primary_10_1039_D2QI02757G crossref_primary_10_1016_j_apcatb_2024_124783 crossref_primary_10_1016_j_jcis_2025_137318 crossref_primary_10_1007_s12274_024_6450_7 crossref_primary_10_1039_D2NR02813A crossref_primary_10_1039_D4CC02726D crossref_primary_10_1002_smll_202311124 crossref_primary_10_1021_acs_inorgchem_3c02886 crossref_primary_10_1016_j_apsusc_2022_155872 crossref_primary_10_1039_D3NA00609C crossref_primary_10_1021_acsnano_4c05772 crossref_primary_10_1021_acsanm_4c04066 crossref_primary_10_1002_advs_202308979 crossref_primary_10_1021_acssuschemeng_4c01335 crossref_primary_10_1016_j_apcatb_2025_125248 crossref_primary_10_1016_j_surfin_2024_104286 |
Cites_doi | 10.1002/anie.201915992 10.1039/c3cp51538a 10.1038/s41929-018-0092-7 10.1021/cr400311p 10.1021/acsenergylett.9b02374 10.1002/anie.202008759 10.1038/nature19060 10.1038/s41560-019-0450-y 10.1021/ac60072a044 10.1038/ncomms5948 10.1038/s41560-020-0654-1 10.1016/j.apcatb.2022.121094 10.1021/jacs.0c01562 10.1038/s41929-019-0269-8 10.1038/s41467-021-23115-x 10.1103/PhysRevB.54.11169 10.1021/acs.chemrev.0c00078 10.1021/ja071330n 10.1016/j.apcatb.2021.120478 10.1038/s41565-020-0746-x 10.1038/s41570-018-0010-1 10.1016/0927-0256(96)00008-0 10.1016/j.jhazmat.2021.127319 10.1038/s41467-021-21555-z 10.1021/acscatal.1c04268 10.1038/s43246-020-00068-0 10.1038/s41467-021-23699-4 10.1039/D1EE03097C 10.1038/nmat3143 10.1039/D1EE00806D 10.1016/j.apcatb.2019.117909 10.1126/science.aar6611 10.1039/c2nr31409f 10.1021/jacs.7b03516 10.1016/j.apcatb.2018.05.041 10.1021/jacs.6b11291 10.1038/s41560-018-0296-8 10.1021/acscatal.0c00297 10.1103/PhysRevLett.77.3865 10.1038/s41929-020-0440-2 10.1002/cite.200700029 10.1126/sciadv.aba6586 10.1016/j.apcatb.2021.120648 10.1039/D0EE01754J 10.1021/acscatal.9b05260 10.1021/acscatal.9b02179 10.1038/s41929-019-0252-4 10.1021/acscatal.1c01525 10.1016/j.apcatb.2021.121021 10.1021/acs.est.8b02743 10.1021/jacs.0c12418 10.1002/anie.202002394 10.1002/anie.200705828 10.1021/jacs.9b13347 10.1002/aenm.201903038 10.1126/sciadv.aat5778 10.1021/cr8003696 10.1021/jacs.7b00452 10.1038/s41586-019-1260-x 10.1126/science.abg2371 10.1016/j.cej.2020.126033 10.1038/s41467-019-13685-2 10.1039/D1EE00594D 10.1126/science.1135941 10.1021/jacs.0c00418 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Aug 5, 2022 |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Aug 5, 2022 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2022.121346 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2022_121346 S0926337322002879 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-a8ed861a98e0af50819eee5c20eddc674079c00602f82a51663133e64b5324cf3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 04:38:34 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Tue Jul 01 04:35:19 EDT 2025 Sat Mar 02 16:01:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Single-atom alloys Cu vacancy Nitrate reduction Synthetic ammonia |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-a8ed861a98e0af50819eee5c20eddc674079c00602f82a51663133e64b5324cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2667261775 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2667261775 crossref_citationtrail_10_1016_j_apcatb_2022_121346 crossref_primary_10_1016_j_apcatb_2022_121346 elsevier_sciencedirect_doi_10_1016_j_apcatb_2022_121346 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-05 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Birdja, Pérez-Gallent, Figueiredo, Göttle, Calle-Vallejo, Koper (bib23) 2019; 4 Mihaylov, Knözinger, Hadjiivanov, Gates (bib50) 2007; 79 Zhang, Ma, Song, He, Waite (bib69) 2018; 52 Wang, Xu, Wang, Huang, Li, Li, Wicks, Luo, Nam, Tan, Ding, Wu, Lum, Dinh, Sinton, Zheng, Sargent (bib16) 2020; 142 Stamenkovic, Fowler, Mun, Wang, Ross, Lucas, Marković (bib58) 2007; 315 Foster, Bakovic, Duda, Maheshwari, Milton, Minteer, Janik, Renner, Greenlee (bib3) 2018; 1 Zhang, Watanabe, Okumura, Haruta, Toshima (bib33) 2012; 11 Ye, Chen, Zhang, Chen, Peng, Yang, Zheng, Li, Ren, Cao, Xue, Qiu, Zhang, Liu (bib18) 2022; 15 Wang, Zhou, Jia, Yu, Zhang (bib13) 2020; 59 Boucher, Zugic, Cladaras, Kammert, Marcinkowski, Lawton, Sykes, Flytzani-Stephanopoulos (bib32) 2013; 15 Zhang, Wen, Luo, Ren, Zhu, Gao, Dou, Sun, Feng, Bai, Yu, Chen (bib43) 2021; 143 Su, Kuan, Liu, Huang (bib11) 2019; 257 Cerrón-Calle, Fajardo, Sánchez-Sánchez, Garcia-Segura (bib14) 2021; 302 Cai, Guo, Ibrahim, Zhang, Sun (bib66) 2021; 299 Hannagan, Giannakakis, Flytzani-Stephanopoulos, Sykes (bib27) 2020; 120 Cao, Xu, Cheng (bib40) 2020; 10 Park, Baker, Somorjai (bib44) 2015; 115 Wu, Luo, Han, Peng, Zhao, Chen, Peng, Liu, de Groot, Tan (bib65) 2019; 5 Bae, Stewart, Gewirth (bib24) 2007; 129 Wang, Li, Zhang (bib26) 2018; 2 Suryanto, Du, Wang, Chen, Simonov, MacFarlane (bib6) 2019; 2 Luc, Fu, Shi, Lv, Jouny, Ko, Xu, Tu, Hu, Wu, Yue, Liu, Jiao, Kang (bib30) 2019; 2 Garcia-Segura, Lanzarini-Lopes, Hristovski, Westerhoff (bib5) 2018; 236 Najdovski, Selvakannan, Bhargava, O'Mullane (bib46) 2012; 4 Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (bib59) 2018; 360 Wu, Karamad, Yong, Huang, Cullen, Zhu, Xia, Xiao, Shakouri, Chen, Kim, Xia, Heck, Hu, Wong, Li, Gates, Siahrostami, Wang (bib17) 2021; 12 Liu, Park, Chen, Qiu, Cheng, Srivastava, Gu, Shanks, Roling, Li (bib56) 2021; 11 Jia, Wang, Wang, Ling, Yu, Zhang (bib7) 2020; 10 Kim, Resasco, Yu, Asiri, Yang (bib53) 2014; 5 Long, Li, Liu, Chen, Zheng, Gao, He, Chen, Qi, Song, Jiang, Zhu, Xiong (bib42) 2017; 139 Guo, Zhang, Zhang, Zhao, Yang, Huang, Dong, Zhi (bib19) 2021; 14 Xu, Ren, Ren, Wang, Wang, Li, Wang, Wang (bib20) 2022; 306 Liu, Pang, Zhang, De Luna, Voznyy, Xu, Zheng, Dinh, Fan, Cao, de Arquer, Safaei, Mepham, Klinkova, Kumacheva, Filleter, Sinton, Kelley, Sargent (bib54) 2016; 537 De Gregorio, Burdyny, Loiudice, Iyengar, Smith, Buonsanti (bib41) 2020; 10 Zhang, Li, Li, Song, Liu (bib22) 2022; 119 Zhang, Dai, Li, Yin, Hoffmann (bib61) 2020; 1 Chen, Yuan, Jiang, Ren, Ding, Ma, Wu, Lu, Wang (bib62) 2020; 5 Wang, Ou, Wicks, Xie, Wang, Li, Tam, Ren, Howe, Wang, Ozden, Finfrock, Xu, Li, Rasouli, Bertens, Ip, Graetzel, Sinton, Sargent (bib25) 2021; 12 Gong, Zhong, He, Liu, Chen, Zhou, Zhang, Kang, Chen (bib8) 2022; 305 Liu, Richards, Singh, Goldsmith (bib12) 2019; 9 Zhao, Li, Zhang, Chen, Xu, Yang, Zhang, Hu (bib21) 2022; 424 Suryanto, Matuszek, Choi, Hodgetts, Du, Bakker, Kang, Cherepanov, Simonov, MacFarlane (bib1) 2021; 372 Feng, Yu, Tang, Wang, Dong, Ni, Tang, Tang, Zhu, Liang (bib28) 2021; 297 Dinh, Jain, de Arquer, De Luna, Li, Wang, Zheng, Cai, Gregory, Voznyy, Zhang, Liu, Sinton, Crumlin, Sargent (bib64) 2019; 4 Zhang, Cui, Feng, Chen, Wang, Wang, Zhang, Zheng, Hong, Wei (bib52) 2019; 10 Jiang, Liu, Hung, Zhou, Zheng (bib38) 2020; 15 Zheng, Jiao, Zhu, Li, Han, Chen, Jaroniec, Qiao (bib63) 2016; 138 Watt, Chrisp (bib34) 1952; 24 Zhang, Chen, Zhang, Yin, Yang (bib57) 2020; 401 Rosca, Duca, de Groot, Koper (bib9) 2009; 109 Wang, Huang, Xi, Xu, Wang (bib68) 2020; 59 Fu, Zhao, Hu, He, Yu, Li, Tu, Qian, Yue, Wasielewski, Kang (bib31) 2020; 19 Zhang, Han, Zhu, Zhang, Li, Gao, Wu, Yang, Liu, Baaziz, Ersen, Gu, Miller, Liu (bib49) 2020; 3 Zhang, Huang, Xiao, Yu, Shuai, An, Zhang, Qiu, Ren, Yu (bib39) 2020; 142 Kim, Xie, Becknell, Yu, Karamad, Chan, Crumlin, Norskov, Yang (bib47) 2017; 139 Monteiro, Goyal, Moerland, Koper (bib60) 2021; 11 Hawtof, Ghosh, Guarr, Xu, Sankaran, Renner (bib4) 2019; 5 Daiyan, Tran-Phu, Kumar, Iputera, Tong, Leverett, Khan, Asghar Esmailpour, Jalili, Lim, Tricoli, Liu, Lu, Lovell, Amal (bib10) 2021; 14 Guo, Xue, Bao, Wang, Sun, Song, Ge, Zhang, Huang, He, Wang (bib29) 2020; 59 Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr, Statt, Blair, Mezzavilla, Kibsgaard, Vesborg, Cargnello, Bent, Jaramillo, Stephens, Nørskov, Chorkendorff (bib2) 2019; 570 Kresse, Furthmüller (bib36) 1996; 6 Kresse, Furthmüller (bib35) 1996; 54 Perdew, Burke, Ernzerhof (bib37) 1996; 77 Yang, Qian, Li, Zhang, Mu, Do, Zhou, Dong, Yan, Qin (bib55) 2020; 6 Li, Zhan, Yang, Quan, Mao, Liu, Wang, Lei, Li, Chan, Xu, Shi, Du, Hao, Wong, Wang, Dou, Zhang, Yu (bib15) 2020; 142 Jiang, Liu, Hung, Zhou, Qin, Zhang, Liu, Gu, Chen, Fu, Zheng (bib48) 2020; 15 Si, Flytzani-Stephanopoulos (bib45) 2008; 47 Ouyang, Papanikolaou, Boubnov, Hoffman, Giannakakis, Bare, Stamatakis, Flytzani-Stephanopoulos, Sykes (bib51) 2021; 12 Liu, Jiao, Li, Stracensky, Sun, Mukerjee, Jia (bib67) 2020; 13 Zhang (10.1016/j.apcatb.2022.121346_bib61) 2020; 1 Rosca (10.1016/j.apcatb.2022.121346_bib9) 2009; 109 Wu (10.1016/j.apcatb.2022.121346_bib17) 2021; 12 Daiyan (10.1016/j.apcatb.2022.121346_bib10) 2021; 14 Zhang (10.1016/j.apcatb.2022.121346_bib49) 2020; 3 Liu (10.1016/j.apcatb.2022.121346_bib54) 2016; 537 Watt (10.1016/j.apcatb.2022.121346_bib34) 1952; 24 Wang (10.1016/j.apcatb.2022.121346_bib16) 2020; 142 Jia (10.1016/j.apcatb.2022.121346_bib7) 2020; 10 Ye (10.1016/j.apcatb.2022.121346_bib18) 2022; 15 Cao (10.1016/j.apcatb.2022.121346_bib40) 2020; 10 Wu (10.1016/j.apcatb.2022.121346_bib65) 2019; 5 Suryanto (10.1016/j.apcatb.2022.121346_bib1) 2021; 372 Cerrón-Calle (10.1016/j.apcatb.2022.121346_bib14) 2021; 302 Chen (10.1016/j.apcatb.2022.121346_bib62) 2020; 5 Kim (10.1016/j.apcatb.2022.121346_bib53) 2014; 5 Garcia-Segura (10.1016/j.apcatb.2022.121346_bib5) 2018; 236 Li (10.1016/j.apcatb.2022.121346_bib15) 2020; 142 Si (10.1016/j.apcatb.2022.121346_bib45) 2008; 47 Jiang (10.1016/j.apcatb.2022.121346_bib48) 2020; 15 Wang (10.1016/j.apcatb.2022.121346_bib68) 2020; 59 Long (10.1016/j.apcatb.2022.121346_bib42) 2017; 139 Zhao (10.1016/j.apcatb.2022.121346_bib21) 2022; 424 Monteiro (10.1016/j.apcatb.2022.121346_bib60) 2021; 11 Guo (10.1016/j.apcatb.2022.121346_bib29) 2020; 59 Ouyang (10.1016/j.apcatb.2022.121346_bib51) 2021; 12 Wang (10.1016/j.apcatb.2022.121346_bib26) 2018; 2 Andersen (10.1016/j.apcatb.2022.121346_bib2) 2019; 570 Perdew (10.1016/j.apcatb.2022.121346_bib37) 1996; 77 Feng (10.1016/j.apcatb.2022.121346_bib28) 2021; 297 Guo (10.1016/j.apcatb.2022.121346_bib19) 2021; 14 Birdja (10.1016/j.apcatb.2022.121346_bib23) 2019; 4 Boucher (10.1016/j.apcatb.2022.121346_bib32) 2013; 15 Zhang (10.1016/j.apcatb.2022.121346_bib33) 2012; 11 Liu (10.1016/j.apcatb.2022.121346_bib56) 2021; 11 Mihaylov (10.1016/j.apcatb.2022.121346_bib50) 2007; 79 Park (10.1016/j.apcatb.2022.121346_bib44) 2015; 115 Liu (10.1016/j.apcatb.2022.121346_bib12) 2019; 9 Stamenkovic (10.1016/j.apcatb.2022.121346_bib58) 2007; 315 Zhang (10.1016/j.apcatb.2022.121346_bib57) 2020; 401 Kresse (10.1016/j.apcatb.2022.121346_bib36) 1996; 6 De Gregorio (10.1016/j.apcatb.2022.121346_bib41) 2020; 10 Yang (10.1016/j.apcatb.2022.121346_bib55) 2020; 6 Najdovski (10.1016/j.apcatb.2022.121346_bib46) 2012; 4 Foster (10.1016/j.apcatb.2022.121346_bib3) 2018; 1 Suryanto (10.1016/j.apcatb.2022.121346_bib6) 2019; 2 Gong (10.1016/j.apcatb.2022.121346_bib8) 2022; 305 Jiang (10.1016/j.apcatb.2022.121346_bib38) 2020; 15 Wang (10.1016/j.apcatb.2022.121346_bib13) 2020; 59 Zhang (10.1016/j.apcatb.2022.121346_bib43) 2021; 143 Zheng (10.1016/j.apcatb.2022.121346_bib63) 2016; 138 Hawtof (10.1016/j.apcatb.2022.121346_bib4) 2019; 5 Hannagan (10.1016/j.apcatb.2022.121346_bib27) 2020; 120 Zhang (10.1016/j.apcatb.2022.121346_bib39) 2020; 142 Liu (10.1016/j.apcatb.2022.121346_bib67) 2020; 13 Zhang (10.1016/j.apcatb.2022.121346_bib22) 2022; 119 Kim (10.1016/j.apcatb.2022.121346_bib47) 2017; 139 Dinh (10.1016/j.apcatb.2022.121346_bib64) 2019; 4 Xu (10.1016/j.apcatb.2022.121346_bib20) 2022; 306 Luc (10.1016/j.apcatb.2022.121346_bib30) 2019; 2 Chen (10.1016/j.apcatb.2022.121346_bib59) 2018; 360 Bae (10.1016/j.apcatb.2022.121346_bib24) 2007; 129 Su (10.1016/j.apcatb.2022.121346_bib11) 2019; 257 Cai (10.1016/j.apcatb.2022.121346_bib66) 2021; 299 Fu (10.1016/j.apcatb.2022.121346_bib31) 2020; 19 Kresse (10.1016/j.apcatb.2022.121346_bib35) 1996; 54 Zhang (10.1016/j.apcatb.2022.121346_bib52) 2019; 10 Wang (10.1016/j.apcatb.2022.121346_bib25) 2021; 12 Zhang (10.1016/j.apcatb.2022.121346_bib69) 2018; 52 |
References_xml | – volume: 138 start-page: 16174 year: 2016 end-page: 16181 ident: bib63 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: bib36 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. – volume: 302 year: 2021 ident: bib14 article-title: Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia publication-title: Appl. Catal. B Environ. – volume: 2 start-page: 290 year: 2019 end-page: 296 ident: bib6 article-title: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia publication-title: Nat. Catal. – volume: 13 start-page: 3064 year: 2020 end-page: 3074 ident: bib67 article-title: Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media publication-title: Energy Environ. Sci. – volume: 109 start-page: 2209 year: 2009 end-page: 2244 ident: bib9 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. – volume: 79 start-page: 795 year: 2007 end-page: 806 ident: bib50 article-title: Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO publication-title: Chem. Ing. Tech. – volume: 129 start-page: 10171 year: 2007 end-page: 10180 ident: bib24 article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 8431 year: 2021 end-page: 8442 ident: bib56 article-title: Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia publication-title: ACS Catal. – volume: 47 start-page: 2884 year: 2008 end-page: 2887 ident: bib45 article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO publication-title: Angew. Chem. Int. Ed. – volume: 306 year: 2022 ident: bib20 article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu publication-title: Appl. Catal. B Environ. – volume: 401 year: 2020 ident: bib57 article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm publication-title: Chem. Eng. J. – volume: 142 start-page: 5702 year: 2020 end-page: 5708 ident: bib16 article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib35 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 119 year: 2022 ident: bib22 article-title: High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: bib26 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. – volume: 142 start-page: 7036 year: 2020 end-page: 7046 ident: bib15 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 4486 year: 2017 end-page: 4492 ident: bib42 article-title: Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 7052 year: 2019 end-page: 7064 ident: bib12 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: ACS Catal. – volume: 52 start-page: 14275 year: 2018 end-page: 14285 ident: bib69 article-title: Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system publication-title: Environ. Sci. Technol. – volume: 120 start-page: 12044 year: 2020 end-page: 12088 ident: bib27 article-title: Single-atom alloy catalysis publication-title: Chem. Rev. – volume: 297 year: 2021 ident: bib28 article-title: Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure publication-title: Appl. Catal. B Environ. – volume: 24 start-page: 2006 year: 1952 end-page: 2008 ident: bib34 article-title: Spectrophotometric method for determination of hydrazine publication-title: Anal. Chem. – volume: 14 start-page: 3588 year: 2021 end-page: 3598 ident: bib10 article-title: Nitrate reduction to ammonium: from CuO defect engineering to waste NO publication-title: Energy Environ. Sci. – volume: 10 year: 2020 ident: bib40 article-title: Construction of defect‐rich RhCu nanotubes with highly active Rh publication-title: Adv. Energy Mater. – volume: 59 start-page: 5350 year: 2020 end-page: 5354 ident: bib13 article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 3938 year: 2021 end-page: 3944 ident: bib19 article-title: Pd doping-weakened Intermediate adsorption to promote electrocatalytic nitrate reduction on TiO publication-title: Energy Environ. Sci. – volume: 12 start-page: 3387 year: 2021 ident: bib25 article-title: Gold-in-copper at low *CO coverage enables efficient electromethanation of CO publication-title: Nat. Commun. – volume: 59 start-page: 19162 year: 2020 end-page: 19167 ident: bib68 article-title: Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction publication-title: Angew. Chem. Int. Ed. – volume: 570 start-page: 504 year: 2019 end-page: 508 ident: bib2 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature – volume: 19 year: 2020 ident: bib31 article-title: Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets publication-title: Appl. Mater. Today – volume: 142 start-page: 11417 year: 2020 end-page: 11427 ident: bib39 article-title: Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 12187 year: 2013 end-page: 12196 ident: bib32 article-title: Single atom alloy surface analogs in Pd publication-title: Phys. Chem. Chem. Phys. – volume: 537 start-page: 382 year: 2016 end-page: 386 ident: bib54 article-title: Enhanced electrocatalytic CO publication-title: Nature – volume: 11 start-page: 14328 year: 2021 end-page: 14335 ident: bib60 article-title: Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media publication-title: ACS Catal. – volume: 299 year: 2021 ident: bib66 article-title: A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition publication-title: Appl. Catal. B Environ. – volume: 12 start-page: 1549 year: 2021 ident: bib51 article-title: Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts publication-title: Nat. Commun. – volume: 372 start-page: 1187 year: 2021 end-page: 1191 ident: bib1 article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle publication-title: Science – volume: 15 start-page: 848 year: 2020 end-page: 853 ident: bib38 article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts publication-title: Nat. Nanotechnol. – volume: 11 start-page: 49 year: 2012 end-page: 52 ident: bib33 article-title: Catalytically highly active top gold atom on palladium nanocluster publication-title: Nat. Mater. – volume: 15 start-page: 848 year: 2020 end-page: 853 ident: bib48 article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts publication-title: Nat. Nanotechnol. – volume: 315 start-page: 493 year: 2007 end-page: 497 ident: bib58 article-title: Improved oxygen reduction activity on Pt publication-title: Science – volume: 5 start-page: 192 year: 2019 end-page: 199 ident: bib65 article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte publication-title: ACS Energy Lett. – volume: 59 start-page: 13778 year: 2020 end-page: 13784 ident: bib29 article-title: Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 4948 year: 2014 ident: bib53 article-title: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles publication-title: Nat. Commun. – volume: 6 start-page: eaba6586 year: 2020 ident: bib55 article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution publication-title: Sci. Adv. – volume: 4 start-page: 107 year: 2019 end-page: 114 ident: bib64 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy – volume: 5 start-page: eaat5778 year: 2019 ident: bib4 article-title: Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system publication-title: Sci. Adv. – volume: 424 year: 2022 ident: bib21 article-title: Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage publication-title: J. Hazard. Mater. – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: bib52 article-title: Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis publication-title: Nat. Commun. – volume: 305 year: 2022 ident: bib8 article-title: Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 605 year: 2020 end-page: 613 ident: bib62 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst publication-title: Nat. Energy – volume: 3 start-page: 411 year: 2020 end-page: 417 ident: bib49 article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO publication-title: Nat. Catal. – volume: 12 start-page: 2870 year: 2021 ident: bib17 article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst publication-title: Nat. Commun. – volume: 115 start-page: 2781 year: 2015 end-page: 2817 ident: bib44 article-title: Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions publication-title: Chem. Rev. – volume: 143 start-page: 6855 year: 2021 end-page: 6864 ident: bib43 article-title: “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO publication-title: J. Am. Chem. Soc. – volume: 236 start-page: 546 year: 2018 end-page: 568 ident: bib5 article-title: Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications publication-title: Appl. Catal. B Environ. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib37 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 360 start-page: eaar6611 year: 2018 ident: bib59 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science – volume: 2 start-page: 423 year: 2019 end-page: 430 ident: bib30 article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate publication-title: Nat. Catal. – volume: 4 start-page: 6298 year: 2012 ident: bib46 article-title: Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis publication-title: Nanoscale – volume: 15 start-page: 760 year: 2022 end-page: 770 ident: bib18 article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide publication-title: Energy Environ. Sci. – volume: 1 start-page: 1 year: 2020 end-page: 9 ident: bib61 article-title: Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production publication-title: Commun. Mater. – volume: 257 year: 2019 ident: bib11 article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity publication-title: Appl. Catal. B Environ. – volume: 10 start-page: 4854 year: 2020 end-page: 4862 ident: bib41 article-title: Facet-dependent selectivity of Cu catalysts in electrochemical CO publication-title: ACS Catal. – volume: 139 start-page: 8329 year: 2017 end-page: 8336 ident: bib47 article-title: Electrochemical Activation of CO publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 3533 year: 2020 end-page: 3540 ident: bib7 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO publication-title: ACS Catal. – volume: 4 start-page: 732 year: 2019 end-page: 745 ident: bib23 article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels publication-title: Nat. Energy – volume: 1 start-page: 490 year: 2018 end-page: 500 ident: bib3 article-title: Catalysts for nitrogen reduction to ammonia publication-title: Nat. Catal. – volume: 59 start-page: 5350 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib13 article-title: Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915992 – volume: 15 start-page: 12187 year: 2013 ident: 10.1016/j.apcatb.2022.121346_bib32 article-title: Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51538a – volume: 1 start-page: 490 year: 2018 ident: 10.1016/j.apcatb.2022.121346_bib3 article-title: Catalysts for nitrogen reduction to ammonia publication-title: Nat. Catal. doi: 10.1038/s41929-018-0092-7 – volume: 115 start-page: 2781 year: 2015 ident: 10.1016/j.apcatb.2022.121346_bib44 article-title: Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions publication-title: Chem. Rev. doi: 10.1021/cr400311p – volume: 5 start-page: 192 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib65 article-title: Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02374 – volume: 59 start-page: 19162 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib68 article-title: Axial modification of cobalt complexes on heterogeneous surface with enhanced electron transfer for carbon dioxide reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008759 – volume: 537 start-page: 382 year: 2016 ident: 10.1016/j.apcatb.2022.121346_bib54 article-title: Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration publication-title: Nature doi: 10.1038/nature19060 – volume: 4 start-page: 732 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib23 article-title: Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels publication-title: Nat. Energy doi: 10.1038/s41560-019-0450-y – volume: 24 start-page: 2006 year: 1952 ident: 10.1016/j.apcatb.2022.121346_bib34 article-title: Spectrophotometric method for determination of hydrazine publication-title: Anal. Chem. doi: 10.1021/ac60072a044 – volume: 5 start-page: 4948 year: 2014 ident: 10.1016/j.apcatb.2022.121346_bib53 article-title: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles publication-title: Nat. Commun. doi: 10.1038/ncomms5948 – volume: 5 start-page: 605 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib62 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 306 year: 2022 ident: 10.1016/j.apcatb.2022.121346_bib20 article-title: Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2022.121094 – volume: 142 start-page: 11417 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib39 article-title: Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01562 – volume: 2 start-page: 423 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib30 article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate publication-title: Nat. Catal. doi: 10.1038/s41929-019-0269-8 – volume: 12 start-page: 2870 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib17 article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.apcatb.2022.121346_bib35 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 120 start-page: 12044 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib27 article-title: Single-atom alloy catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00078 – volume: 129 start-page: 10171 year: 2007 ident: 10.1016/j.apcatb.2022.121346_bib24 article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071330n – volume: 297 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib28 article-title: Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120478 – volume: 15 start-page: 848 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib48 article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0746-x – volume: 2 start-page: 65 year: 2018 ident: 10.1016/j.apcatb.2022.121346_bib26 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 6 start-page: 15 year: 1996 ident: 10.1016/j.apcatb.2022.121346_bib36 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 424 year: 2022 ident: 10.1016/j.apcatb.2022.121346_bib21 article-title: Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127319 – volume: 12 start-page: 1549 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib51 article-title: Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-021-21555-z – volume: 11 start-page: 14328 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib60 article-title: Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media publication-title: ACS Catal. doi: 10.1021/acscatal.1c04268 – volume: 1 start-page: 1 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib61 article-title: Proton-assisted electron transfer and hydrogen-atom diffusion in a model system for photocatalytic hydrogen production publication-title: Commun. Mater. doi: 10.1038/s43246-020-00068-0 – volume: 12 start-page: 3387 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib25 article-title: Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23699-4 – volume: 15 start-page: 760 year: 2022 ident: 10.1016/j.apcatb.2022.121346_bib18 article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03097C – volume: 11 start-page: 49 year: 2012 ident: 10.1016/j.apcatb.2022.121346_bib33 article-title: Catalytically highly active top gold atom on palladium nanocluster publication-title: Nat. Mater. doi: 10.1038/nmat3143 – volume: 119 year: 2022 ident: 10.1016/j.apcatb.2022.121346_bib22 article-title: High-ammonia selective metal-organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 3938 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib19 article-title: Pd doping-weakened Intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00806D – volume: 257 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib11 article-title: Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117909 – volume: 19 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib31 article-title: Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets publication-title: Appl. Mater. Today – volume: 360 start-page: eaar6611 year: 2018 ident: 10.1016/j.apcatb.2022.121346_bib59 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 4 start-page: 6298 year: 2012 ident: 10.1016/j.apcatb.2022.121346_bib46 article-title: Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis publication-title: Nanoscale doi: 10.1039/c2nr31409f – volume: 302 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib14 article-title: Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia publication-title: Appl. Catal. B Environ. – volume: 139 start-page: 8329 year: 2017 ident: 10.1016/j.apcatb.2022.121346_bib47 article-title: Electrochemical Activation of CO2 through atomic ordering transformations of AuCu nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03516 – volume: 236 start-page: 546 year: 2018 ident: 10.1016/j.apcatb.2022.121346_bib5 article-title: Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.05.041 – volume: 138 start-page: 16174 year: 2016 ident: 10.1016/j.apcatb.2022.121346_bib63 article-title: High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11291 – volume: 4 start-page: 107 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib64 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 10 start-page: 4854 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib41 article-title: Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities publication-title: ACS Catal. doi: 10.1021/acscatal.0c00297 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.apcatb.2022.121346_bib37 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 3 start-page: 411 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib49 article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation publication-title: Nat. Catal. doi: 10.1038/s41929-020-0440-2 – volume: 79 start-page: 795 year: 2007 ident: 10.1016/j.apcatb.2022.121346_bib50 article-title: Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO publication-title: Chem. Ing. Tech. doi: 10.1002/cite.200700029 – volume: 6 start-page: eaba6586 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib55 article-title: O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution publication-title: Sci. Adv. doi: 10.1126/sciadv.aba6586 – volume: 299 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib66 article-title: A highly active and stable Pd/MoC catalyst for hydrogen production from methanol decomposition publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120648 – volume: 13 start-page: 3064 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib67 article-title: Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01754J – volume: 10 start-page: 3533 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib7 article-title: Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05260 – volume: 9 start-page: 7052 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib12 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: ACS Catal. doi: 10.1021/acscatal.9b02179 – volume: 2 start-page: 290 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib6 article-title: Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia publication-title: Nat. Catal. doi: 10.1038/s41929-019-0252-4 – volume: 11 start-page: 8431 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib56 article-title: Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia publication-title: ACS Catal. doi: 10.1021/acscatal.1c01525 – volume: 305 year: 2022 ident: 10.1016/j.apcatb.2022.121346_bib8 article-title: Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.121021 – volume: 52 start-page: 14275 year: 2018 ident: 10.1016/j.apcatb.2022.121346_bib69 article-title: Continuous ammonia recovery from wastewaters using an integrated capacitive flow electrode membrane stripping system publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02743 – volume: 143 start-page: 6855 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib43 article-title: “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12418 – volume: 59 start-page: 13778 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib29 article-title: Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002394 – volume: 47 start-page: 2884 year: 2008 ident: 10.1016/j.apcatb.2022.121346_bib45 article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705828 – volume: 142 start-page: 5702 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib16 article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 10 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib40 article-title: Construction of defect‐rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903038 – volume: 5 start-page: eaat5778 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib4 article-title: Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system publication-title: Sci. Adv. doi: 10.1126/sciadv.aat5778 – volume: 109 start-page: 2209 year: 2009 ident: 10.1016/j.apcatb.2022.121346_bib9 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 139 start-page: 4486 year: 2017 ident: 10.1016/j.apcatb.2022.121346_bib42 article-title: Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00452 – volume: 570 start-page: 504 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib2 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 372 start-page: 1187 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib1 article-title: Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle publication-title: Science doi: 10.1126/science.abg2371 – volume: 15 start-page: 848 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib38 article-title: Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0746-x – volume: 401 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib57 article-title: Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126033 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.apcatb.2022.121346_bib52 article-title: Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13685-2 – volume: 14 start-page: 3588 year: 2021 ident: 10.1016/j.apcatb.2022.121346_bib10 article-title: Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00594D – volume: 315 start-page: 493 year: 2007 ident: 10.1016/j.apcatb.2022.121346_bib58 article-title: Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability publication-title: Science doi: 10.1126/science.1135941 – volume: 142 start-page: 7036 year: 2020 ident: 10.1016/j.apcatb.2022.121346_bib15 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 |
SSID | ssj0002328 |
Score | 2.6993043 |
Snippet | Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 121346 |
SubjectTerms | Alloys Ammonia Catalysts Chemical reduction Copper Cu vacancy Decay Distillation Electrocatalysis Gold Nitrate reduction Single-atom alloys Synthetic ammonia Wastewater |
Title | Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys |
URI | https://dx.doi.org/10.1016/j.apcatb.2022.121346 https://www.proquest.com/docview/2667261775 |
Volume | 310 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5V5QAcEA1UFErlAwc4uEn82s0xilKlregFKpWT5bXHUlCbRs3m0Au_nZl9UEBClTh6ZVsrz9ue-Qbggw5Zm4RWkvV20rioZVVaJ9EmVY5NcAa53vnzhVtcmrMre7UDs74WhtMqO93f6vRGW3dfht1pDtfL5fDLaKKc1gVxJAcOBRfxGVMwlx__eEjzII-h0cY0WfLsvnyuyfEK6xjqiqJEpY4bbDP3L_P0l6JurM_JS3jRuY1i2v7ZHuzgagBPZ323tgE8_w1YcAD784f6NVrWCfDmFXybt21vmlube9pMkEgzWoS4YwxXppKob0Vg7lwGQaOEudWJYrodz7biI6mtT4JvGK5RUsR-I_jp_n7zGi5P5l9nC9l1V5CR5LaWocRUunGYlDgK2bJrgIg2qhGmFF1Bkd4kMlyLyqUKREmnKZ5FZypLTljMeh92V7crfAMiqZQzeRYpmmTy2FWTUUVGEFGrShcqH4DuD9XHDnqcO2Bc-z7H7LtvSeGZFL4lxQHIX6vWLfTGI_OLnl7-DxbyZB0eWXnYk9d3Irzx5LkUDFdf2Lf_vfE7eMajJmHQHsJufbfF9-TE1NVRw6VH8GR6er64-AmuxO_d |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RONAeqhKKoKXgQw_lYJL4tbtHFAUFClwKEj1ZXnssBUGIyObApb-9432UthJC4ri7trXyvO2ZbwC-ShelCqg5WW_DlfGSl7k2HHUQ-VA5ozDVO59fmMmVOr3W1ysw6mphUlplq_sbnV5r6_ZNv93N_nw67f8YFMJImRFHpsAhK97AmiLxTW0MDn895XmQy1CrYxrN0_Cufq5O8nJz76qSwkQhDmtwM_OcffpPU9fm5_gDvG_9RnbU_NoGrOCsB-ujrl1bD979hSzYg63xUwEbTWsleLEJP8dN35v62OaRFmMk0wkugj0kENdEJlbdM5fYc-oYPQWMjVJkR8vhaMm-kd46YOmI4RY5hex3LN3dPy4-wtXx-HI04W17Be5JcCvucgy5Gboix4GLOvkGiKi9GGAI3mQU6hU-4bWImAtHpDSSAlo0qtTkhfkot2B1dj_DbWBBhBjJtQheBRWHpiwGJVlBRClKmYm4A7LbVOtb7PHUAuPWdklmN7YhhU2ksA0pdoD_mTVvsDdeGJ919LL_8JAl8_DCzN2OvLaV4YUl1yVLePWZ_vTqhfdhfXJ5fmbPTi6-f4a36UudPah3YbV6WOIX8miqcq_m2N8vufFr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+nitrate+reduction+to+ammonia+on+defective+Au1Cu+%28111%29+single-atom+alloys&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Yuanzheng&rft.au=Chen%2C+Xiang&rft.au=Wang%2C+Weilai&rft.au=Yin%2C+Lifeng&rft.date=2022-08-05&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=310&rft_id=info:doi/10.1016%2Fj.apcatb.2022.121346&rft.externalDocID=S0926337322002879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |