Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys

Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a pr...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 310; p. 121346
Main Authors Zhang, Yuanzheng, Chen, Xiang, Wang, Weilai, Yin, Lifeng, Crittenden, John C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.08.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrocatalytic reduction of nitrate (NO3–) to ammonia (NH3) in wastewater is a promising economic process for NH3 synthesis. This work designed and prepared Au1Cu (111) single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs), which exhibited superior NH3 Faradaic efficiency (98.7%) with a production rate of 555 μg h–1 cm–2 at −0.2 V vs. RHE, while negligible activity decay was found after a durability test. Meanwhile, 97% of produced NH3 can be recovered by a simple membrane distillation. Characterizations evidence that electron migration from Cu to Au atoms creates electron-deficient Cu active sites in VCu-Au1Cu SAAs, which promote the generation of active hydrogen species (*H) that can readily hydrogenate NO3–. Theoretical calculation reveals that the bi-functional Cu sites not only promote the activation of water to produce *H but also lower the energy barrier of *NH3 desorption from the catalyst surface. [Display omitted] ●Au1Cu single-atom alloys with surface Cu vacancies (VCu-Au1Cu SAAs) is reported.●A highly NH3 Faradaic efficiency of 98.7% is obtained on the VCu-Au1Cu SAAs.●VCu-Au1Cu SAAs promoted H2O dissociation to *H that boost NO3–-to-NH3 conversion.●DFT revealed the role of single-atom and vacancy defect on catalytic performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-3373
1873-3883
DOI:10.1016/j.apcatb.2022.121346