Uniqueness and Bifurcation Branches for Planar Steady Navier–Stokes Equations Under Navier Boundary Conditions
The stationary Navier–Stokes equations under Navier boundary conditions are considered in a square. The uniqueness of solutions is studied in dependence of the Reynolds number and of the strength of the external force. For some particular forcing, it is shown that uniqueness persists on some continu...
Saved in:
Published in | Journal of mathematical fluid mechanics Vol. 23; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The stationary Navier–Stokes equations under Navier boundary conditions are considered in a square. The uniqueness of solutions is studied in dependence of the Reynolds number and of the strength of the external force. For some particular forcing, it is shown that uniqueness persists on some continuous branch of solutions, when these quantities become arbitrarily large. On the other hand, for a different forcing, a branch of symmetric solutions is shown to bifurcate, giving rise to a secondary branch of nonsymmetric solutions. This proof is computer-assisted, based on a local representation of branches as analytic arcs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1422-6928 1422-6952 |
DOI: | 10.1007/s00021-021-00572-4 |