Aeroacoustic noise reduction by application of end plates on wall-mounted finite airfoils
One known method to reduce vortex shedding from the tip of a blade is the use of end plates or winglets. Although the aerodynamic impact of such end plates has been investigated in the past, no studies exist on the effect of such end plates on the far-field noise. The aeroacoustic noise reduction of...
Saved in:
Published in | Experiments in fluids Vol. 62; no. 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | One known method to reduce vortex shedding from the tip of a blade is the use of end plates or winglets. Although the aerodynamic impact of such end plates has been investigated in the past, no studies exist on the effect of such end plates on the far-field noise. The aeroacoustic noise reduction of three different end-plate geometries is experimentally investigated. The end plates are applied to the free end of a wall-mounted symmetric NACA 0012 airfoil and a cambered NACA 4412 airfoil with an aspect ratio of 2 and natural boundary layer transition. Microphone array measurements are taken in the aeroacoustic open-jet wind tunnel at BTU Cottbus-Senftenberg for chord-based Reynolds numbers between 75,000 and 225,000 and angles of attack from 0
∘
to 30
∘
. The obtained acoustic spectra show a broad frequency hump for the airfoil base configurations at higher angles of attack that is attributed to tip noise. Hot-wire measurements taken for one configuration show that the application of an end plate diffuses the vorticity at the tip. The aeroacoustic noise contribution of the tip can be reduced when the endplates are applied. This reduction is most effective for higher angles of attack, when the tip vortex is the dominant sound source.
Graphic abstract |
---|---|
ISSN: | 0723-4864 1432-1114 |
DOI: | 10.1007/s00348-021-03204-9 |