Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries
•The sandwiched structure of Si/Ti3C2 hybrid release the strain of Si particles.•The Ti3C2 layers can effectively alleviate volume variation of Si anode.•The Si/Ti3C2 hybrid shows improved cycling performance than pristine Si. The practical application of Si anodes is hampered by huge volume expansi...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 378; p. 122212 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The sandwiched structure of Si/Ti3C2 hybrid release the strain of Si particles.•The Ti3C2 layers can effectively alleviate volume variation of Si anode.•The Si/Ti3C2 hybrid shows improved cycling performance than pristine Si.
The practical application of Si anodes is hampered by huge volume expansion during lithiation/delithiation process, leading to poor cycling performance and electrode fracture. To overcome such weakness, a sandwich-like Si/d-Ti3C2 hybrids are fabricated and show an excellent reversible capacity of 1130 mA h g−1 at a current density of 500 mA g−1 after 200 cycles. Comparing with pristine Si, the improved electrochemical performance of Si/d-Ti3C2 hybrids can be attributed to the fact that the d-Ti3C2 MXene can significantly enhance the electronic conductivity of electrode and support integrity of electrodes. The Si/d-Ti3C2 hybrids perform their promising prospect in lithium ion batteries. |
---|---|
AbstractList | •The sandwiched structure of Si/Ti3C2 hybrid release the strain of Si particles.•The Ti3C2 layers can effectively alleviate volume variation of Si anode.•The Si/Ti3C2 hybrid shows improved cycling performance than pristine Si.
The practical application of Si anodes is hampered by huge volume expansion during lithiation/delithiation process, leading to poor cycling performance and electrode fracture. To overcome such weakness, a sandwich-like Si/d-Ti3C2 hybrids are fabricated and show an excellent reversible capacity of 1130 mA h g−1 at a current density of 500 mA g−1 after 200 cycles. Comparing with pristine Si, the improved electrochemical performance of Si/d-Ti3C2 hybrids can be attributed to the fact that the d-Ti3C2 MXene can significantly enhance the electronic conductivity of electrode and support integrity of electrodes. The Si/d-Ti3C2 hybrids perform their promising prospect in lithium ion batteries. |
ArticleNumber | 122212 |
Author | Zhu, Xiaoquan Zhang, Fengbao Shen, Jiale Peng, Wenchao Chen, Xifan Li, Yang Zhang, Guoliang Fan, Xiaobin |
Author_xml | – sequence: 1 givenname: Xiaoquan surname: Zhu fullname: Zhu, Xiaoquan – sequence: 2 givenname: Jiale surname: Shen fullname: Shen, Jiale – sequence: 3 givenname: Xifan surname: Chen fullname: Chen, Xifan – sequence: 4 givenname: Yang surname: Li fullname: Li, Yang – sequence: 5 givenname: Wenchao orcidid: 0000-0002-1515-8287 surname: Peng fullname: Peng, Wenchao – sequence: 6 givenname: Guoliang surname: Zhang fullname: Zhang, Guoliang – sequence: 7 givenname: Fengbao surname: Zhang fullname: Zhang, Fengbao – sequence: 8 givenname: Xiaobin orcidid: 0000-0002-9615-3866 surname: Fan fullname: Fan, Xiaobin email: xiaobinfan@tju.edu.cn |
BookMark | eNp9kMtKAzEUhoMo2FYfwF1eYMZkMp0LrqTUC1Rc2IW7kElOOhmmSUmi0Lc3Q93oohDIzyFfOP83R5fWWUDojpKcElrdD7mEIS8IbXNaFAUtLtCMNjXLWMqXKbNmmTVtWV-jeQgDIaRqaTtD_dr2wkpQWB7laOwOH8Br5_fTEDuNP0z29gkWsBXW9cfOGxWwSMc6BTi9xL3Z9X-o0cTefO2xcRZ3IkbwBsINutJiDHD7ey_Q9mm9Xb1km_fn19XjJpMlITFrle6WJVAA0dWqY6KsWOqjmQbSLqWUTVVTwkDWBAolUmpo00KjBai6ZWyB6tO30rsQPGguTRQxrRK9MCOnhE---MCTLz754idfiaT_yIM3e-GPZ5mHEwOp0bcBz4M0MOk0HmTkypkz9A8DdIck |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_145102 crossref_primary_10_1002_batt_202300331 crossref_primary_10_1016_j_jallcom_2022_168646 crossref_primary_10_1016_j_jpowsour_2025_236520 crossref_primary_10_1021_acsaem_3c02720 crossref_primary_10_1021_acs_iecr_2c00741 crossref_primary_10_1016_j_matre_2022_100080 crossref_primary_10_1021_acs_energyfuels_4c00562 crossref_primary_10_1021_acsnano_3c12543 crossref_primary_10_1002_adfm_202402307 crossref_primary_10_1016_j_jallcom_2020_157799 crossref_primary_10_1016_j_susmat_2024_e01021 crossref_primary_10_1021_acsaem_2c02706 crossref_primary_10_1016_j_jallcom_2020_158487 crossref_primary_10_1021_acsanm_2c02594 crossref_primary_10_1016_j_diamond_2023_110379 crossref_primary_10_1016_j_jcis_2020_07_052 crossref_primary_10_1021_acsaem_2c02500 crossref_primary_10_1007_s40820_024_01388_3 crossref_primary_10_2174_2210681213666230911161526 crossref_primary_10_1016_j_jallcom_2021_160994 crossref_primary_10_1149_1945_7111_ad1c12 crossref_primary_10_1007_s40195_020_01153_6 crossref_primary_10_3390_nano11123454 crossref_primary_10_1016_j_flatc_2021_100281 crossref_primary_10_1021_acssuschemeng_2c04123 crossref_primary_10_1016_j_apsusc_2023_159111 crossref_primary_10_1016_j_cej_2022_138785 crossref_primary_10_1016_j_seppur_2024_128141 crossref_primary_10_1007_s12598_021_01876_0 crossref_primary_10_1016_j_ijoes_2023_100232 crossref_primary_10_1016_j_nanoen_2020_105433 crossref_primary_10_1021_acssuschemeng_2c03081 crossref_primary_10_1016_j_jpcs_2023_111339 crossref_primary_10_1016_j_jcis_2024_12_060 crossref_primary_10_1016_j_commatsci_2021_110776 crossref_primary_10_1016_j_jcis_2020_07_028 crossref_primary_10_1021_acsaem_1c02785 crossref_primary_10_1016_j_cej_2021_129102 crossref_primary_10_1016_j_scib_2019_12_005 crossref_primary_10_1021_acsaem_1c01736 crossref_primary_10_1021_acsami_1c01088 crossref_primary_10_1016_j_est_2022_105914 crossref_primary_10_1080_09276440_2024_2374589 crossref_primary_10_1088_1402_4896_ad4c27 crossref_primary_10_1016_j_apsusc_2021_150415 crossref_primary_10_1016_j_cej_2020_126565 crossref_primary_10_1016_j_jallcom_2025_179442 crossref_primary_10_1021_acs_energyfuels_3c01346 crossref_primary_10_3390_nanoenergyadv2020007 crossref_primary_10_1016_j_jtice_2022_104263 crossref_primary_10_1007_s12598_024_02723_8 crossref_primary_10_1016_j_ensm_2021_12_026 crossref_primary_10_1021_acsnano_1c11298 crossref_primary_10_1016_j_electacta_2020_137491 crossref_primary_10_1021_acsanm_3c03823 crossref_primary_10_1039_D0NR04925E crossref_primary_10_1016_j_cej_2024_157317 crossref_primary_10_1016_j_cej_2024_154449 crossref_primary_10_1002_admi_202400681 crossref_primary_10_1016_j_jpowsour_2025_236538 crossref_primary_10_1039_D1SE01681D crossref_primary_10_1002_chem_202100174 crossref_primary_10_1142_S1793604721510036 crossref_primary_10_1016_j_cej_2021_129397 crossref_primary_10_1016_j_mtener_2021_100832 crossref_primary_10_1016_j_cej_2024_152905 crossref_primary_10_1016_j_est_2020_101765 crossref_primary_10_1002_celc_202100878 crossref_primary_10_1016_j_colsurfa_2023_132777 crossref_primary_10_1039_D0NR01222J crossref_primary_10_1088_2515_7655_acb6b4 crossref_primary_10_1007_s12598_021_01895_x crossref_primary_10_1007_s12274_022_4518_9 crossref_primary_10_1016_j_ijbiomac_2024_134239 crossref_primary_10_1016_j_cej_2024_150564 crossref_primary_10_1039_D0CP02275F crossref_primary_10_1016_j_jcis_2024_04_174 crossref_primary_10_1021_acsanm_2c04722 crossref_primary_10_1016_j_commatsci_2023_112728 crossref_primary_10_1016_j_ensm_2020_10_026 crossref_primary_10_1021_acsaem_1c01396 crossref_primary_10_1002_smm2_1061 crossref_primary_10_1016_j_cej_2022_139139 crossref_primary_10_1039_D0NR06086K crossref_primary_10_1021_acsami_0c05116 crossref_primary_10_1021_acsami_3c16049 crossref_primary_10_1016_j_jhazmat_2020_124361 |
Cites_doi | 10.1002/anie.200601676 10.1021/am402124r 10.1063/1.4916259 10.1002/smll.201702737 10.1039/c2cc17061b 10.1002/advs.201500286 10.1002/aenm.201100259 10.1021/acsami.5b10616 10.1016/j.ensm.2018.05.010 10.1155/2014/617405 10.1021/acsenergylett.8b00718 10.1016/j.ijhydene.2016.07.220 10.1016/j.ensm.2017.11.015 10.1186/1556-276X-7-604 10.1016/j.cej.2017.10.007 10.1002/advs.201700180 10.1002/aenm.201300882 10.1002/adma.201702410 10.1186/s11671-016-1414-9 10.1016/j.jpowsour.2016.06.089 10.1021/nn204476h 10.1007/s10008-010-1045-5 10.1016/j.ceramint.2014.05.093 10.1039/c3cp51276b 10.1038/nenergy.2015.29 10.1002/adfm.201701264 10.1021/ja501520b 10.1021/acsami.8b21893 10.1016/j.ceramint.2018.07.071 10.1016/j.carbon.2015.11.031 10.1016/j.jcis.2017.03.077 10.1039/C8NR00380G 10.1021/acsnano.8b02849 10.1021/acsenergylett.7b01063 10.1016/j.cej.2018.06.109 10.1016/S0920-5861(99)00048-6 10.1002/ange.201606643 10.1039/C6QM00302H 10.1016/j.jpowsour.2015.12.036 10.1002/anie.201710616 10.1021/nl902058c 10.1088/0957-4484/24/42/424011 10.1002/aenm.201702485 10.1021/nn901409q 10.1016/j.nanoen.2014.04.006 10.1039/C5NR01209K 10.1021/acsanm.8b00045 10.1016/j.carbon.2014.10.046 10.1002/aenm.201601481 10.1002/advs.201800502 10.1016/j.nanoen.2016.07.023 10.1021/nl201470j 10.1021/nl3014814 10.1016/j.carbon.2017.05.002 10.1016/j.powtec.2017.01.063 10.1038/s41467-019-08383-y 10.1002/adma.201607017 10.1002/(SICI)1097-4555(199910)30:10<877::AID-JRS464>3.0.CO;2-5 10.1002/slct.201700366 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2019.122212 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2019_122212 S1385894719316067 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c400t-9dfb54e1eeab7db3a463222f3fe095ccc867103ec70e2da03e8189e8faed7933 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 03:52:22 EDT 2025 Fri Feb 23 02:48:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium ion batteries Si anode Sandwich-structure MXene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-9dfb54e1eeab7db3a463222f3fe095ccc867103ec70e2da03e8189e8faed7933 |
ORCID | 0000-0002-9615-3866 0000-0002-1515-8287 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2019_122212 crossref_primary_10_1016_j_cej_2019_122212 elsevier_sciencedirect_doi_10_1016_j_cej_2019_122212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Haro, Singh, Steinhauer, Toulkeridou, Grammatikopoulos, Sowwan (b0015) 2017; 4 Zhang, Park, Seral-Ascaso, Barwich, McEvoy, Boland, Coleman, Gogotsi, Nicolosi (b0180) 2019; 10 Wu, Nie, Wu, Dou, Zhang (b0200) 2018; 334 Zhou, Pu, Wang, Cai, Chen, Zhang, Guan (b0250) 2013; 15 Jiang, Mu, Chen, Wu, Cheng, Li, Wu (b0040) 2016; 325 Tao, Zhu, Xiong, Zhang, Yang (b0290) 2017; 2 Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (b0060) 2009; 9 Xiu, Wang, Yu, Wu, Qiu (b0230) 2018; 12 Cheng, Liu, Yun, Luo, Gao (b0270) 2014; 40 Zhou, Yin, Wan, Guo (b0210) 2012; 48 Wang, Zhou, Tan, Chen, Wu, Lu, Amine (b0280) 2015; 7 Mi, Li, Xu, Li, Chai, He, Li, Liu (b0285) 2016; 11 Chan, Patel, O'Connell, Korgel, Cui (b0085) 2010; 4 Yu, Li, Zhou, Chen, Lee, Yang (b0100) 2017; 120 Li, Xu, Li, Yin, Wan, Guo (b0025) 2017; 1 Liu, Wu, McDowell, Yao, Wang, Cui (b0130) 2012; 12 Xu, Sun, Li, Yin, Guo (b0065) 2018; 12 Xuan, Wang, Chen, Liang, Cheng, Yang, Liu, Ma, Sasaki, Geng (b0170) 2016; 128 Zhao, Xie, Ren, Makaryan, Anasori, Wang, Gogotsi (b0165) 2017; 29 Zhong, Xia, Shi, Zhan, Tu, Fan (b0145) 2016; 3 Rasalingam, Peng, Koodali (b0255) 2014; 2014 Song, Yang, Zhang, Zhang, Wen (b0020) 2018; 44 Mehonic, Buckwell, Montesi, Garnett, Hudziak, Fearn, Chater, McPhail, Kenyon (b0260) 2015; 117 Gao, Wachs (b0265) 1999; 51 Laïk, Ung, Caillard, Sorin Cojocaru, Pribat, Pereira-Ramos (b0300) 2010; 14 Xu, Li, Sun, Yin, Wan, Guo (b0120) 2017; 7 Yu, Hu, Anasori, Liu, Zhu, Zhang, Gogotsi, Xu (b0190) 2018; 3 Zhang, Zhang, Jin, Zong, Bai, Lian, Xu, Ma (b0075) 2018 Liu, Zhong, Huang, Mao, Zhu, Huang (b0080) 2012; 6 Li, Yan, Lee, Lu, Liu, Cui (b0135) 2016; 1 Tao, Xiong, Zhu, Yang, Zhang (b0235) 2016; 41 Yi, Zai, Dai, Gordin, Wang (b0110) 2014; 6 Xie, Kretschmer, Anasori, Sun, Wang, Gogotsi (b0220) 2018; 1 Lu, Ma, Deng, Wu, Wu, Luo, Wang, Chen (b0070) 2018; 351 Chen, Xie, Anasori, Sarycheva, Makaryan, Zhao, Urbankowski, Miao, Jiang, Gogotsi (b0150) 2018; 57 Nguyen, Yao, Zamfir, Biswas, So, Lee, Kim, Cha, Kim, Pribat (b0055) 2011; 1 Zhao, Wang, Zhao, Li, Wang, Yin (b0240) 2017; 3 Yao, McDowell, Ryu, Wu, Liu, Hu, Nix, Cui (b0105) 2011; 11 Zhang, Yang, Xie, Yi, Huang, Chen (b0115) 2015; 82 Tang, Li, Pan, Cullen, Liu, Pakdel, Long, Yang, McEvoy, Duesberg, Nicolosi, Zhang (b0195) 2018; 5 Feng, Li, Liu, Kashkooli, Xiao, Cai, Chen (b0010) 2018; 14 Bao, Liu, Wang, Choi, Wang, Wang (b0175) 2018; 13 Xie, Naguib, Mochalin, Barsoum, Gogotsi, Yu, Nam, Yang, Kolesnikov, Kent (b0295) 2014; 136 Xia, Li, Li, Liu, Wang, Li, Lü, Spendelow, Zhang, Wu (b0125) 2013; 5 Su, Wu, Li, Xiao, Lott, Lu, Sheldon, Wu (b0005) 2014; 4 Wu, Wang, Yu, Xiu, Qiu (b0185) 2017; 29 Xie, Wang, Kretschmer, Wang (b0205) 2017; 499 Wang, Liu, Zheng, Zheng, Mei, Du, Li (b0050) 2013; 24 López, López, Valerdi, Salgado, Díaz-Becerril, Pedraza, Gracia (b0275) 2012; 7 Casimir, Zhang, Ogoke, Amine, Lu, Wu (b0030) 2016; 27 Bie, Yang, Liu, Wang, Nuli, Lu (b0035) 2016; 8 Luo, Xiao, Lei, Li, Tang (b0095) 2016; 98 Dall’Agnese, Rozier, Taberna, Gogotsi, Simon (b0160) 2016; 306 Guo, Zhang, Song, Wu, Liu, Wang (b0140) 2018; 14 Wu, Tu, Zhang, Guo, Li, Zhang, Wang, Pan (b0245) 2017; 311 Tian, An, Feng (b0090) 2019; 11 Yu, Cao, Yi, Zhang, Li, Sun, Wang, Ma (b0155) 2018; 10 Wolf (b0225) 1999; 30 Ng, Wang, Wexler, Konstantinov, Guo, Liu (b0045) 2006; 45 Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (b0215) 2017; 27 Rasalingam (10.1016/j.cej.2019.122212_b0255) 2014; 2014 Chan (10.1016/j.cej.2019.122212_b0085) 2010; 4 Xiu (10.1016/j.cej.2019.122212_b0230) 2018; 12 Zhong (10.1016/j.cej.2019.122212_b0145) 2016; 3 Cheng (10.1016/j.cej.2019.122212_b0270) 2014; 40 Xu (10.1016/j.cej.2019.122212_b0120) 2017; 7 Park (10.1016/j.cej.2019.122212_b0060) 2009; 9 Liu (10.1016/j.cej.2019.122212_b0130) 2012; 12 Yu (10.1016/j.cej.2019.122212_b0100) 2017; 120 Yi (10.1016/j.cej.2019.122212_b0110) 2014; 6 Xuan (10.1016/j.cej.2019.122212_b0170) 2016; 128 Yao (10.1016/j.cej.2019.122212_b0105) 2011; 11 Xu (10.1016/j.cej.2019.122212_b0065) 2018; 12 Zhou (10.1016/j.cej.2019.122212_b0210) 2012; 48 Gao (10.1016/j.cej.2019.122212_b0265) 1999; 51 Lu (10.1016/j.cej.2019.122212_b0070) 2018; 351 Mi (10.1016/j.cej.2019.122212_b0285) 2016; 11 Wu (10.1016/j.cej.2019.122212_b0185) 2017; 29 Yu (10.1016/j.cej.2019.122212_b0155) 2018; 10 Bie (10.1016/j.cej.2019.122212_b0035) 2016; 8 Li (10.1016/j.cej.2019.122212_b0025) 2017; 1 Song (10.1016/j.cej.2019.122212_b0020) 2018; 44 Xie (10.1016/j.cej.2019.122212_b0205) 2017; 499 Wu (10.1016/j.cej.2019.122212_b0245) 2017; 311 Zhou (10.1016/j.cej.2019.122212_b0250) 2013; 15 Tao (10.1016/j.cej.2019.122212_b0290) 2017; 2 Chen (10.1016/j.cej.2019.122212_b0150) 2018; 57 Zhang (10.1016/j.cej.2019.122212_b0180) 2019; 10 Li (10.1016/j.cej.2019.122212_b0135) 2016; 1 Xie (10.1016/j.cej.2019.122212_b0220) 2018; 1 Tian (10.1016/j.cej.2019.122212_b0090) 2019; 11 Tang (10.1016/j.cej.2019.122212_b0195) 2018; 5 Liu (10.1016/j.cej.2019.122212_b0080) 2012; 6 Casimir (10.1016/j.cej.2019.122212_b0030) 2016; 27 Laïk (10.1016/j.cej.2019.122212_b0300) 2010; 14 Mehonic (10.1016/j.cej.2019.122212_b0260) 2015; 117 Xie (10.1016/j.cej.2019.122212_b0295) 2014; 136 Wang (10.1016/j.cej.2019.122212_b0050) 2013; 24 Zhao (10.1016/j.cej.2019.122212_b0165) 2017; 29 Yu (10.1016/j.cej.2019.122212_b0190) 2018; 3 Yan (10.1016/j.cej.2019.122212_b0215) 2017; 27 Nguyen (10.1016/j.cej.2019.122212_b0055) 2011; 1 Zhang (10.1016/j.cej.2019.122212_b0075) 2018 Dall’Agnese (10.1016/j.cej.2019.122212_b0160) 2016; 306 Xia (10.1016/j.cej.2019.122212_b0125) 2013; 5 Guo (10.1016/j.cej.2019.122212_b0140) 2018; 14 Zhao (10.1016/j.cej.2019.122212_b0240) 2017; 3 Su (10.1016/j.cej.2019.122212_b0005) 2014; 4 Feng (10.1016/j.cej.2019.122212_b0010) 2018; 14 López (10.1016/j.cej.2019.122212_b0275) 2012; 7 Wolf (10.1016/j.cej.2019.122212_b0225) 1999; 30 Wang (10.1016/j.cej.2019.122212_b0280) 2015; 7 Jiang (10.1016/j.cej.2019.122212_b0040) 2016; 325 Wu (10.1016/j.cej.2019.122212_b0200) 2018; 334 Luo (10.1016/j.cej.2019.122212_b0095) 2016; 98 Bao (10.1016/j.cej.2019.122212_b0175) 2018; 13 Tao (10.1016/j.cej.2019.122212_b0235) 2016; 41 Zhang (10.1016/j.cej.2019.122212_b0115) 2015; 82 Haro (10.1016/j.cej.2019.122212_b0015) 2017; 4 Ng (10.1016/j.cej.2019.122212_b0045) 2006; 45 |
References_xml | – volume: 311 start-page: 200 year: 2017 end-page: 205 ident: b0245 article-title: Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries publication-title: Powder Technol. – volume: 82 start-page: 161 year: 2015 end-page: 167 ident: b0115 article-title: Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries publication-title: Carbon – volume: 6 start-page: 211 year: 2014 end-page: 218 ident: b0110 article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries publication-title: Nano Energy – volume: 14 start-page: 1835 year: 2010 end-page: 1839 ident: b0300 article-title: An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries publication-title: J. Solid State Electrochem. – volume: 12 start-page: 8017 year: 2018 end-page: 8028 ident: b0230 article-title: Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting publication-title: ACS Nano – volume: 9 start-page: 3844 year: 2009 end-page: 3847 ident: b0060 article-title: Silicon nanotube battery anodes publication-title: Nano Lett. – volume: 13 start-page: 1702485 year: 2018 ident: b0175 article-title: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 41 start-page: 21268 year: 2016 end-page: 21277 ident: b0235 article-title: Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 1601481 year: 2017 ident: b0120 article-title: Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes publication-title: Adv. Energy Mater. – volume: 11 start-page: 2949 year: 2011 end-page: 2954 ident: b0105 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. – volume: 30 start-page: 877 year: 1999 end-page: 883 ident: b0225 article-title: Stress measurements in Si microelectronics devices using Raman spectroscopy publication-title: J. Raman Spectrosc. – volume: 45 start-page: 6896 year: 2006 end-page: 6899 ident: b0045 article-title: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 1443 year: 2010 end-page: 1450 ident: b0085 article-title: Solution-grown silicon nanowires for lithium-ion battery anodes publication-title: ACS Nano – volume: 499 start-page: 17 year: 2017 end-page: 32 ident: b0205 article-title: Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries publication-title: J. Colloid Interface Sci. – volume: 6 start-page: 1522 year: 2012 end-page: 1531 ident: b0080 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano – volume: 7 start-page: 604 year: 2012 ident: b0275 article-title: Morphological, compositional, structural, and optical properties of Si-NC embedded in SiO publication-title: Nanoscale Res. Lett. – volume: 12 start-page: 54 year: 2018 end-page: 60 ident: b0065 article-title: Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries publication-title: Energy Storage Mater. – volume: 334 start-page: 932 year: 2018 end-page: 938 ident: b0200 article-title: 2D MXene/SnS publication-title: Chem. Eng. J. – volume: 1 start-page: 1154 year: 2011 end-page: 1161 ident: b0055 article-title: Highly interconnected Si nanowires for improved stability Li-ion battery anodes publication-title: Adv. Energy Mater. – volume: 5 start-page: 1800502 year: 2018 ident: b0195 article-title: In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries publication-title: Adv. Sci. – volume: 27 start-page: 1701264 year: 2017 ident: b0215 article-title: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2832 year: 2017 end-page: 2840 ident: b0290 article-title: Reduced graphene oxide wrapped Si/C assembled on 3D N-doped carbon foam as binder-free anode for enhanced lithium storage publication-title: ChemistrySelect – volume: 12 start-page: 3315 year: 2012 end-page: 3321 ident: b0130 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. – volume: 11 start-page: 10004 year: 2019 end-page: 10011 ident: b0090 article-title: Flexible and free-standing silicon/MXene composite paper for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 351 start-page: 269 year: 2018 end-page: 279 ident: b0070 article-title: Dual stabilized architecture of hollow Si@TiO publication-title: Chem. Eng. J. – volume: 8 start-page: 2899 year: 2016 end-page: 2904 ident: b0035 article-title: Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1702737 year: 2018 ident: b0010 article-title: Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications publication-title: Small – volume: 120 start-page: 397 year: 2017 end-page: 404 ident: b0100 article-title: Self-adaptive Si/reduced graphene oxide scrolls for high-performance Li-ion battery anodes publication-title: Carbon – volume: 3 start-page: 1597 year: 2018 end-page: 1603 ident: b0190 article-title: MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors publication-title: ACS Energy Lett. – volume: 11 start-page: 204 year: 2016 ident: b0285 article-title: A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries publication-title: Nanoscale Res. Lett. – volume: 2014 start-page: 1 year: 2014 end-page: 42 ident: b0255 article-title: Removal of hazardous pollutants from wastewaters: applications of TiO publication-title: J. Nanomater. – volume: 4 start-page: 1700180 year: 2017 ident: b0015 article-title: Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-ion batteries publication-title: Adv. Sci. – volume: 306 start-page: 510 year: 2016 end-page: 515 ident: b0160 article-title: Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes publication-title: J. Power Sources – volume: 15 start-page: 11394 year: 2013 end-page: 11401 ident: b0250 article-title: Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries publication-title: Phys. Chem. Chem. Phys. – volume: 51 start-page: 233 year: 1999 end-page: 254 ident: b0265 article-title: Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties publication-title: Catal. Today – volume: 29 start-page: 1702410 year: 2017 ident: b0165 article-title: Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage publication-title: Adv. Mater. – volume: 14 start-page: 306 year: 2018 end-page: 313 ident: b0140 article-title: MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage publication-title: Energy Storage Mater. – volume: 4 start-page: 1300882 year: 2014 ident: b0005 article-title: Silicon-based nanomaterials for lithium-ion batteries: a review publication-title: Adv. Energy Mater. – volume: 98 start-page: 373 year: 2016 end-page: 380 ident: b0095 article-title: Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries publication-title: Carbon – volume: 117 year: 2015 ident: b0260 article-title: Structural changes and conductance thresholds in metal-free intrinsic SiO publication-title: J. Appl. Phys. – volume: 44 start-page: 18509 year: 2018 end-page: 18515 ident: b0020 article-title: High-performance phosphorus-modified SiO/C anode material for lithium ion batteries publication-title: Ceram. Int. – volume: 1 start-page: 505 year: 2018 end-page: 511 ident: b0220 article-title: Porous Ti publication-title: ACS Appl. Nano Mater. – volume: 3 start-page: 132 year: 2017 end-page: 140 ident: b0240 article-title: Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors publication-title: ACS Energy Lett. – volume: 3 start-page: 1500286 year: 2016 ident: b0145 article-title: Transition metal carbides and nitrides in energy storage and conversion publication-title: Adv. Sci. – volume: 7 start-page: 8023 year: 2015 end-page: 8034 ident: b0280 article-title: Encapsulating micro-nano Si/SiO publication-title: Nanoscale – volume: 136 start-page: 6385 year: 2014 end-page: 6394 ident: b0295 article-title: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 14789 year: 2016 end-page: 14794 ident: b0170 article-title: Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance publication-title: Angew. Chem. – volume: 29 start-page: 1607017 year: 2017 ident: b0185 article-title: Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability publication-title: Adv. Mater. – volume: 40 start-page: 13781 year: 2014 end-page: 13786 ident: b0270 article-title: SiO publication-title: Ceram. Int. – volume: 10 start-page: 5906 year: 2018 end-page: 5913 ident: b0155 article-title: Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors publication-title: Nanoscale – volume: 48 start-page: 2198 year: 2012 end-page: 2200 ident: b0210 article-title: Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries publication-title: Chem. Commun. – volume: 325 start-page: 630 year: 2016 end-page: 636 ident: b0040 article-title: Electrochemical performance of Si anode modified with carbonized gelatin binder publication-title: J. Power Sources – volume: 10 start-page: 849 year: 2019 ident: b0180 article-title: High capacity silicon anodes enabled by MXene viscous aqueous ink publication-title: Nat. Commun. – volume: 27 start-page: 359 year: 2016 end-page: 376 ident: b0030 article-title: Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation publication-title: Nano Energy – year: 2018 ident: b0075 article-title: A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes publication-title: Chem. Eng. J. – volume: 57 start-page: 1846 year: 2018 end-page: 1850 ident: b0150 article-title: MoS publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1691 year: 2017 end-page: 1708 ident: b0025 article-title: Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries publication-title: Mater. Chem. Front. – volume: 1 start-page: 15029 year: 2016 ident: b0135 article-title: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes publication-title: Nat. Energy – volume: 24 year: 2013 ident: b0050 article-title: Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries publication-title: Nanotechnology – volume: 5 start-page: 8607 year: 2013 end-page: 8614 ident: b0125 article-title: Graphene/Fe publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 6896 year: 2006 ident: 10.1016/j.cej.2019.122212_b0045 article-title: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200601676 – volume: 5 start-page: 8607 year: 2013 ident: 10.1016/j.cej.2019.122212_b0125 article-title: Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am402124r – volume: 117 year: 2015 ident: 10.1016/j.cej.2019.122212_b0260 article-title: Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory publication-title: J. Appl. Phys. doi: 10.1063/1.4916259 – volume: 14 start-page: 1702737 year: 2018 ident: 10.1016/j.cej.2019.122212_b0010 article-title: Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications publication-title: Small doi: 10.1002/smll.201702737 – volume: 48 start-page: 2198 year: 2012 ident: 10.1016/j.cej.2019.122212_b0210 article-title: Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries publication-title: Chem. Commun. doi: 10.1039/c2cc17061b – volume: 3 start-page: 1500286 year: 2016 ident: 10.1016/j.cej.2019.122212_b0145 article-title: Transition metal carbides and nitrides in energy storage and conversion publication-title: Adv. Sci. doi: 10.1002/advs.201500286 – volume: 1 start-page: 1154 year: 2011 ident: 10.1016/j.cej.2019.122212_b0055 article-title: Highly interconnected Si nanowires for improved stability Li-ion battery anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100259 – volume: 8 start-page: 2899 year: 2016 ident: 10.1016/j.cej.2019.122212_b0035 article-title: Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10616 – volume: 14 start-page: 306 year: 2018 ident: 10.1016/j.cej.2019.122212_b0140 article-title: MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.010 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.cej.2019.122212_b0255 article-title: Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials publication-title: J. Nanomater. doi: 10.1155/2014/617405 – volume: 3 start-page: 1597 year: 2018 ident: 10.1016/j.cej.2019.122212_b0190 article-title: MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00718 – volume: 41 start-page: 21268 year: 2016 ident: 10.1016/j.cej.2019.122212_b0235 article-title: Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.220 – volume: 12 start-page: 54 year: 2018 ident: 10.1016/j.cej.2019.122212_b0065 article-title: Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.11.015 – volume: 7 start-page: 604 year: 2012 ident: 10.1016/j.cej.2019.122212_b0275 article-title: Morphological, compositional, structural, and optical properties of Si-NC embedded in SiOx films publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-604 – volume: 334 start-page: 932 year: 2018 ident: 10.1016/j.cej.2019.122212_b0200 article-title: 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.007 – volume: 4 start-page: 1700180 year: 2017 ident: 10.1016/j.cej.2019.122212_b0015 article-title: Nanoscale heterogeneity of multilayered Si anodes with embedded nanoparticle scaffolds for Li-ion batteries publication-title: Adv. Sci. doi: 10.1002/advs.201700180 – volume: 4 start-page: 1300882 year: 2014 ident: 10.1016/j.cej.2019.122212_b0005 article-title: Silicon-based nanomaterials for lithium-ion batteries: a review publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300882 – volume: 29 start-page: 1702410 year: 2017 ident: 10.1016/j.cej.2019.122212_b0165 article-title: Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage publication-title: Adv. Mater. doi: 10.1002/adma.201702410 – year: 2018 ident: 10.1016/j.cej.2019.122212_b0075 article-title: A robust hierarchical 3D Si/CNTs composite with void and carbon shell as Li-ion battery anodes publication-title: Chem. Eng. J. – volume: 11 start-page: 204 year: 2016 ident: 10.1016/j.cej.2019.122212_b0285 article-title: A tremella-like nanostructure of silicon@void@graphene-like nanosheets composite as an anode for lithium-ion batteries publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1414-9 – volume: 325 start-page: 630 year: 2016 ident: 10.1016/j.cej.2019.122212_b0040 article-title: Electrochemical performance of Si anode modified with carbonized gelatin binder publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.089 – volume: 6 start-page: 1522 year: 2012 ident: 10.1016/j.cej.2019.122212_b0080 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano doi: 10.1021/nn204476h – volume: 14 start-page: 1835 year: 2010 ident: 10.1016/j.cej.2019.122212_b0300 article-title: An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-010-1045-5 – volume: 40 start-page: 13781 year: 2014 ident: 10.1016/j.cej.2019.122212_b0270 article-title: SiO2/TiO2 composite aerogels: preparation via ambient pressure drying and photocatalytic performance publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.05.093 – volume: 15 start-page: 11394 year: 2013 ident: 10.1016/j.cej.2019.122212_b0250 article-title: Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51276b – volume: 1 start-page: 15029 year: 2016 ident: 10.1016/j.cej.2019.122212_b0135 article-title: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes publication-title: Nat. Energy doi: 10.1038/nenergy.2015.29 – volume: 27 start-page: 1701264 year: 2017 ident: 10.1016/j.cej.2019.122212_b0215 article-title: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701264 – volume: 136 start-page: 6385 year: 2014 ident: 10.1016/j.cej.2019.122212_b0295 article-title: Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501520b – volume: 11 start-page: 10004 year: 2019 ident: 10.1016/j.cej.2019.122212_b0090 article-title: Flexible and free-standing silicon/MXene composite paper for high-performance lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21893 – volume: 44 start-page: 18509 year: 2018 ident: 10.1016/j.cej.2019.122212_b0020 article-title: High-performance phosphorus-modified SiO/C anode material for lithium ion batteries publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.07.071 – volume: 98 start-page: 373 year: 2016 ident: 10.1016/j.cej.2019.122212_b0095 article-title: Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2015.11.031 – volume: 499 start-page: 17 year: 2017 ident: 10.1016/j.cej.2019.122212_b0205 article-title: Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.03.077 – volume: 10 start-page: 5906 year: 2018 ident: 10.1016/j.cej.2019.122212_b0155 article-title: Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors publication-title: Nanoscale doi: 10.1039/C8NR00380G – volume: 12 start-page: 8017 year: 2018 ident: 10.1016/j.cej.2019.122212_b0230 article-title: Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting publication-title: ACS Nano doi: 10.1021/acsnano.8b02849 – volume: 3 start-page: 132 year: 2017 ident: 10.1016/j.cej.2019.122212_b0240 article-title: Molecular-level heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01063 – volume: 351 start-page: 269 year: 2018 ident: 10.1016/j.cej.2019.122212_b0070 article-title: Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance li-ion battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.109 – volume: 51 start-page: 233 year: 1999 ident: 10.1016/j.cej.2019.122212_b0265 article-title: Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties publication-title: Catal. Today doi: 10.1016/S0920-5861(99)00048-6 – volume: 128 start-page: 14789 year: 2016 ident: 10.1016/j.cej.2019.122212_b0170 article-title: Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance publication-title: Angew. Chem. doi: 10.1002/ange.201606643 – volume: 1 start-page: 1691 year: 2017 ident: 10.1016/j.cej.2019.122212_b0025 article-title: Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries publication-title: Mater. Chem. Front. doi: 10.1039/C6QM00302H – volume: 306 start-page: 510 year: 2016 ident: 10.1016/j.cej.2019.122212_b0160 article-title: Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.12.036 – volume: 57 start-page: 1846 year: 2018 ident: 10.1016/j.cej.2019.122212_b0150 article-title: MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710616 – volume: 9 start-page: 3844 year: 2009 ident: 10.1016/j.cej.2019.122212_b0060 article-title: Silicon nanotube battery anodes publication-title: Nano Lett. doi: 10.1021/nl902058c – volume: 24 year: 2013 ident: 10.1016/j.cej.2019.122212_b0050 article-title: Electrochemical performances and volume variation of nano-textured silicon thin films as anodes for lithium-ion batteries publication-title: Nanotechnology doi: 10.1088/0957-4484/24/42/424011 – volume: 13 start-page: 1702485 year: 2018 ident: 10.1016/j.cej.2019.122212_b0175 article-title: Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702485 – volume: 4 start-page: 1443 year: 2010 ident: 10.1016/j.cej.2019.122212_b0085 article-title: Solution-grown silicon nanowires for lithium-ion battery anodes publication-title: ACS Nano doi: 10.1021/nn901409q – volume: 6 start-page: 211 year: 2014 ident: 10.1016/j.cej.2019.122212_b0110 article-title: Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.006 – volume: 7 start-page: 8023 year: 2015 ident: 10.1016/j.cej.2019.122212_b0280 article-title: Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries publication-title: Nanoscale doi: 10.1039/C5NR01209K – volume: 1 start-page: 505 year: 2018 ident: 10.1016/j.cej.2019.122212_b0220 article-title: Porous Ti3C2Tx MXene for ultrahigh-rate sodium-ion storage with long cycle life publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00045 – volume: 82 start-page: 161 year: 2015 ident: 10.1016/j.cej.2019.122212_b0115 article-title: Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2014.10.046 – volume: 7 start-page: 1601481 year: 2017 ident: 10.1016/j.cej.2019.122212_b0120 article-title: Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601481 – volume: 5 start-page: 1800502 year: 2018 ident: 10.1016/j.cej.2019.122212_b0195 article-title: In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries publication-title: Adv. Sci. doi: 10.1002/advs.201800502 – volume: 27 start-page: 359 year: 2016 ident: 10.1016/j.cej.2019.122212_b0030 article-title: Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.023 – volume: 11 start-page: 2949 year: 2011 ident: 10.1016/j.cej.2019.122212_b0105 article-title: Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life publication-title: Nano Lett. doi: 10.1021/nl201470j – volume: 12 start-page: 3315 year: 2012 ident: 10.1016/j.cej.2019.122212_b0130 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. doi: 10.1021/nl3014814 – volume: 120 start-page: 397 year: 2017 ident: 10.1016/j.cej.2019.122212_b0100 article-title: Self-adaptive Si/reduced graphene oxide scrolls for high-performance Li-ion battery anodes publication-title: Carbon doi: 10.1016/j.carbon.2017.05.002 – volume: 311 start-page: 200 year: 2017 ident: 10.1016/j.cej.2019.122212_b0245 article-title: Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.01.063 – volume: 10 start-page: 849 year: 2019 ident: 10.1016/j.cej.2019.122212_b0180 article-title: High capacity silicon anodes enabled by MXene viscous aqueous ink publication-title: Nat. Commun. doi: 10.1038/s41467-019-08383-y – volume: 29 start-page: 1607017 year: 2017 ident: 10.1016/j.cej.2019.122212_b0185 article-title: Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability publication-title: Adv. Mater. doi: 10.1002/adma.201607017 – volume: 30 start-page: 877 year: 1999 ident: 10.1016/j.cej.2019.122212_b0225 article-title: Stress measurements in Si microelectronics devices using Raman spectroscopy publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199910)30:10<877::AID-JRS464>3.0.CO;2-5 – volume: 2 start-page: 2832 year: 2017 ident: 10.1016/j.cej.2019.122212_b0290 article-title: Reduced graphene oxide wrapped Si/C assembled on 3D N-doped carbon foam as binder-free anode for enhanced lithium storage publication-title: ChemistrySelect doi: 10.1002/slct.201700366 |
SSID | ssj0006919 |
Score | 2.5836966 |
Snippet | •The sandwiched structure of Si/Ti3C2 hybrid release the strain of Si particles.•The Ti3C2 layers can effectively alleviate volume variation of Si anode.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122212 |
SubjectTerms | Lithium ion batteries MXene Sandwich-structure Si anode |
Title | Enhanced cycling performance of Si-MXene nanohybrids as anode for high performance lithium ion batteries |
URI | https://dx.doi.org/10.1016/j.cej.2019.122212 |
Volume | 378 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwZFJouy3tHgmBoAQOgpFb033UQrQlCgcu_nZn-hBI1INJk3abmU0zu_vNbOexhNwq32OgiELDDwVsUNBTyJmKDE97piW4Ao2N_zuGo1b_yXmYutMK6ZS5MBhWWWB_jukZWhdvmoU0m4vZrDm20KfFAVw5s8AMx4xyx_Fwljc-N2EeLZ4d7oHEBlKXns0sxkvqOUZ38YYFatKyf9ZNW_qmd0QOC0ORtvNvOSYVnZyQg63ygack7iZx5sCnco0Zji90sUkDoGlExzNjOAUwo0mYpPEak7M-aAhXkipNgZJiteIdLrDK49nqjcJwUZHV3oSt9BmZ9LqTTt8oTk4wJKzJpcFVJFxHW1qHwlOChU4LPSoRizSYVFJKrGpnMi09U9sqhCfQ21z7UagVLFh2TqpJmugLQjmHbhjAqRDM4b4rRGTKSEHbt6WtrRoxS5EFsqgqjodbvAZl-Ng8ACkHKOUgl3KN3H2zLPKSGn8RO-U4BDvzIgDI_53t8n9sV2QfWxiuYrnXpLp8X-kbMDqWop7NqjrZa98P-iO8Dx6fB1-potfr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdPJpWWbWn3aAimyuMCJtya7qNSooUoHPz3zpQWNVEPJj30sdM0s7vfzHZmvgW40oHP0RDFVhBLXKBQpFBwnVi-8W1HCo0Wm_539Aet8NF9GHvjCrTLWhhKqyywf4XpOVoXdxqFNhvzNG0MHYppCQRXwR10w_0NqBE7lVeF2u19NxysAbkl8v09qL1FAmVwM0_zUmZKCV7ixkFL6TR_Nk9fTM7dLuwUviK7XX3OHlRMtg_bXxgED2DSySZ5DJ-pdypyfGLzz0oANkvYMLX6Y8QzlsXZbPJO9VlvLMYjm2nDsCUjwuJvUuiYT9LlC8MeYzKn38TV9CGM7jqjdmgVmydYCqflwhI6kZ5rHGNi6WvJY7dFQZWEJwa9KqUUEdvZ3CjfNk0d4xmabmGCJDYa5yw_gmo2y8wxMCHwNRwRVUruisCTMrFVovE6aKqmcepglyqLVEEsTvtbPEdlBtk0Qi1HpOVopeU6XK9F5itWjb8au2U_RN-GRoSo_7vYyf_ELmEzHPV7Ue9-0D2FLXpC2SuOdwbVxevSnKMPspAXxRj7AFZE2Pk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+cycling+performance+of+Si-MXene+nanohybrids+as+anode+for+high+performance+lithium+ion+batteries&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhu%2C+Xiaoquan&rft.au=Shen%2C+Jiale&rft.au=Chen%2C+Xifan&rft.au=Li%2C+Yang&rft.date=2019-12-15&rft.issn=1385-8947&rft.volume=378&rft.spage=122212&rft_id=info:doi/10.1016%2Fj.cej.2019.122212&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2019_122212 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |