Multi-Scroll Attractor and Multi-Stable Dynamics of a Three-Dimensional Jerk System
A multi-scroll attractor reflects the structural diversity of the dynamic system, and multi-stability behavior reflects its state diversity. Multi-scroll and multi-stability chaotic systems can produce complex random sequences, which have important application values in the field of data security. H...
Saved in:
Published in | Energies (Basel) Vol. 16; no. 5; p. 2494 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A multi-scroll attractor reflects the structural diversity of the dynamic system, and multi-stability behavior reflects its state diversity. Multi-scroll and multi-stability chaotic systems can produce complex random sequences, which have important application values in the field of data security. However, current works on multi-scroll–multi-steady behavior have been carried out separately, rather than simultaneously. This paper considers a three-dimensional Jerk system with a sinusoidal nonlinear term. The basic dynamic behaviors, such as the stability of equilibrium points, bifurcation of parameters and initial values, phase diagrams, and basins of attraction, were analyzed. It was found that the system has infinite equilibrium points. Moreover, the system not only generates complex dynamics, such as single-scroll, double-scroll, and multi-scroll but also realizes the self-reproduction of these dynamic characteristics by controlling the initial value of the system. Therefore, by expanding the equilibrium point, the effective controls of the system’s structural diversity and state diversity are realized at the same time, having important theoretical significance and application value. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16052494 |