Inhibitory Control Over Ca2+ Sparks via Mechanosensitive Channels Is Disrupted in Dystrophin Deficient Muscle but Restored by Mini-Dystrophin Expression

Background In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca2+ release events (ECRE) in high Ca2+ external environments. Such ‘uncontrolled’ Ca2+ sparks were suggested to act as dy...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 3; no. 11; p. e3644
Main Authors Teichmann, Martin D. H., Wegner, Frederic v., Fink, Rainer H. A., Chamberlain, Jeffrey S., Launikonis, Bradley S., Martinac, Boris, Friedrich, Oliver
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 04.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca2+ release events (ECRE) in high Ca2+ external environments. Such ‘uncontrolled’ Ca2+ sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are elusive. Also, it is not known whether truncated dystrophins can correct the dystrophic disinhibition. Methodology/Principal Findings We recorded ECRE activity in single intact fibers from adult wt, mdx and mini-dystrophin expressing mice (MinD) under resting isotonic conditions and following hyper-/hypo-osmolar external shock using confocal microscopy and imaging techniques. Isotonic ECRE frequencies were small in wt and MinD fibers, but were markedly increased in mdx fibers. Osmotic challenge dramatically increased ECRE activity in mdx fibers. Sustained osmotic challenge induced marked exponential ECRE activity adaptation that was three times faster in mdx compared to wt and MinD fibers. Rising external Ca2+ concentrations amplified osmotic ECRE responses. The eliminated ECRE suppression in intact osmotically stressed mdx fibers was completely and reversibly resuscitated by streptomycine (200 µM), spider peptide GsMTx-4 (5 µM) and Gd3+ (20 µM) that block unspecific, specific cationic and Ca2+ selective mechanosensitive channels (MsC), respectively. ECRE morphology was not substantially altered by membrane stress. During hyperosmotic challenge, membrane potentials were polarised and a putative depolarisation through aberrant MsC negligible excluding direct activation of ECRE through tubular depolarisation. Conclusions/Significance Dystrophin suppresses spontaneous ECRE activity by control of mechanosensitive pathways which are suggested to interact with the inhibitory DHPR loop to the ryanodine receptor. MsC-related disinhibition prevails in dystrophic muscle and can be resuscitated by transgenic mini-dystrophin expression. Our results have important implications for the pathophysiology of DMD where abnormal MsC in dystrophic muscle confer disruption of microdomain Ca2+ homeostasis. MsC blockers should have considerable therapeutic potential if more muscle specific compounds can be found.
Bibliography:Conceived and designed the experiments: OF. Performed the experiments: MDHT OF. Analyzed the data: MDHT FvW OF. Contributed reagents/materials/analysis tools: FvW RHF JSC OF. Wrote the paper: BL BM OF.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0003644