Simulating radial dose of ion tracks in liquid water simulated with Geant4-DNA: A comparative study
An accurate modeling of radial energy deposition around ion tracks is a key requirement of radiation transport software used for simulations in radiobiology at the sub-cellular scale. The work presented in this paper is part of the on-going benchmarking of the “Geant4-DNA” physics processes and mode...
Saved in:
Published in | Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Vol. 333; pp. 92 - 98 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.08.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An accurate modeling of radial energy deposition around ion tracks is a key requirement of radiation transport software used for simulations in radiobiology at the sub-cellular scale. The work presented in this paper is part of the on-going benchmarking of the “Geant4-DNA” physics processes and models, which are available in the Geant4 Monte Carlo simulation toolkit for the low energy transport of particles in liquid water. We present for the first time radial dose distributions of incident ion tracks simulated with “Geant4-DNA”. Simulation results are compared to other results available in the literature, obtained from analytical calculations, step-by-step Monte Carlo simulations and measurements. They show a reasonable agreement with reference data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0168-583X 1872-9584 |
DOI: | 10.1016/j.nimb.2014.04.025 |