Simulating radial dose of ion tracks in liquid water simulated with Geant4-DNA: A comparative study

An accurate modeling of radial energy deposition around ion tracks is a key requirement of radiation transport software used for simulations in radiobiology at the sub-cellular scale. The work presented in this paper is part of the on-going benchmarking of the “Geant4-DNA” physics processes and mode...

Full description

Saved in:
Bibliographic Details
Published inNuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Vol. 333; pp. 92 - 98
Main Authors Incerti, S., Psaltaki, M., Gillet, P., Barberet, Ph, Bardiès, M., Bernal, M.A., Bordage, M.-C., Breton, V., Davidkova, M., Delage, E., El Bitar, Z., Francis, Z., Guatelli, S., Ivanchenko, A., Ivanchenko, V., Karamitros, M., Lee, S.B., Maigne, L., Meylan, S., Murakami, K., Nieminen, P., Payno, H., Perrot, Y., Petrovic, I., Pham, Q.T., Ristic-Fira, A., Santin, G., Sasaki, T., Seznec, H., Shin, J.I., Stepan, V., Tran, H.N., Villagrasa, C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.08.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An accurate modeling of radial energy deposition around ion tracks is a key requirement of radiation transport software used for simulations in radiobiology at the sub-cellular scale. The work presented in this paper is part of the on-going benchmarking of the “Geant4-DNA” physics processes and models, which are available in the Geant4 Monte Carlo simulation toolkit for the low energy transport of particles in liquid water. We present for the first time radial dose distributions of incident ion tracks simulated with “Geant4-DNA”. Simulation results are compared to other results available in the literature, obtained from analytical calculations, step-by-step Monte Carlo simulations and measurements. They show a reasonable agreement with reference data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2014.04.025