P(MMA-EMA) Random Copolymer Electrolytes Incorporating Sodium Iodide for Potential Application in a Dye-Sensitized Solar Cell

Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA) incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier t...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 7; no. 2; pp. 266 - 280
Main Authors Dzulkurnain, Nurul Akmaliah, Ahmad, Azizan, Mohamed, Nor Sabirin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer electrolytes based on 90 wt% of methyl methacrylate and 10 wt% of ethyl methacrylate (90MMA-co-10EMA) incorporating different weight ratios of sodium iodide were prepared using the solution casting method. The complexation between salt and copolymer host has been investigated using Fourier transform infrared spectroscopy. The ionic conductivity and thermal stability of the electrolytes were measured using impedance spectroscopy and differential scanning calorimetry, respectively. Scanning electron microscopy was used to study the morphology of the polymer electrolytes. The ionic conductivity and glass transition temperature increased up to 20 wt% of sodium iodide (5.19 × 10-6 S*cm-1) and decreased with the further addition of salt concentration, because of the crosslinked effect. The morphology behavior of the highest conducting sample also showed smaller pores compared to the other concentration. The total ionic transference number proved that this system was mainly due to ions, and the electrochemical stability window was up to 2.5 V, which is suitable for a dye-sensitized solar cell application. This sample was then tested in a dye-sensitized solar cell and exhibited an efficiency of 0.62%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym7020266