The pH-dependence of lipid-mediated antimicrobial peptide resistance in a model staphylococcal plasma membrane: A two-for-one mechanism of epithelial defence circumvention

The mechanisms of membrane defence by lysylphosphatidylglycerol (LPG), were investigated using synthetic biomimetic mono- and bilayer models of methicillin resistant S. aureus ST239 TW, based on its lipid composition in both pH 7.4 (28% LPG) and pH 5.5 (51% LPG) cultures. These models incorporated a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmaceutical sciences Vol. 128; pp. 43 - 53
Main Authors Rehal, Reg, Gaffney, Piers R.J., Hubbard, Alasdair T.M., Barker, Robert D., Harvey, Richard D.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mechanisms of membrane defence by lysylphosphatidylglycerol (LPG), were investigated using synthetic biomimetic mono- and bilayer models of methicillin resistant S. aureus ST239 TW, based on its lipid composition in both pH 7.4 (28% LPG) and pH 5.5 (51% LPG) cultures. These models incorporated a stable synthetic analogue of LPG (3adLPG) to facilitate long-duration biophysical studies, which were previously limited by the lability native LPG. Both increased 3adLPG content and full headgroup ionization at pH 5.5, increased bilayer order and dampened overall charge, via the formation of neutral ion pairs with anionic lipids. Ion pair formation in air/liquid interface lipid monolayers elicited a significant condensing effect, which correlated with the inhibition of subphase-injected magainin 2 F5W partitioning. In fluid phase lipid vesicles, increasing the proportion of 3adLPG from 28 to 51 mol% completely inhibited the adoption of the membrane-active α‑helical conformation of the peptide, without the need for full headgroup ionization. Neutron reflectivity measurements performed on biomimetic PG/3adLPG fluid floating bilayers, showed a significant ordering effect of mild acidity on a bilayer containing 30 mol% 3adLPG, whilst peptide binding/partitioning was only fully inhibited in a bilayer with 55 mol% 3adLPG at pH 5.5. These findings are discussed with respect to the roles of LPG in resistance to human epithelial defences in S. aureus and the continued evolution of this opportunistic pathogen's virulence. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0928-0987
1879-0720
DOI:10.1016/j.ejps.2018.11.017