Improvement of an Automated Sample Injection System for Pillar Array Columns to Increase Analytical Reproducibility

In our previous study, we developed an automatic sample injection system for pillar array columns for quantitative analysis. An autosampler was used to maintain a constant sample injection volume. However, the sample was diluted during injection using the autosampler, thus deteriorating the analytic...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 15; p. 4715
Main Authors Kuroki, Hiroshi, Koyama, Hirotaka, Tsunoda, Makoto
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In our previous study, we developed an automatic sample injection system for pillar array columns for quantitative analysis. An autosampler was used to maintain a constant sample injection volume. However, the sample was diluted during injection using the autosampler, thus deteriorating the analytical reproducibility. In this study, we have substituted the autosampler with a syringe pump to overcome the abovementioned problem and improve the system. Sample dilution was avoided by filling the entire capillary with the sample at a constant rate. This improved system also increased the analytical reproducibility. In the previous system, the relative standard deviation (RSD) exceeded 17% of the peak height for coumarin dyes. In contrast, the improved system decreased the RSD to the range 1.2–1.8%. The analytical reproducibility was evaluated by using five types of amino acids. The RSD of each peak height was within 3.0%, confirming good reproducibility. These results indicate that the sample injection method developed in this study can be applied to biological sample analyses as a simple quantitative analysis method for pillar array columns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27154715