Bienzyme system immobilized in biomimetic silica for application in antifouling coatings

Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bac...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 23; no. 8; pp. 1384 - 1388
Main Authors Wang, Hongwu, Jiang, Yanjun, Zhou, Liya, Gao, Jing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore,enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation of α-amylase and glucose oxidase, which promotes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme(A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BScontaining coating releases H2O2 at rates exceeding a target of 36 nmol·cm-2·d-1for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes,presenting an interesting avenue for enzyme-based antifouling solutions.
Bibliography:Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coatings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore,enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation of α-amylase and glucose oxidase, which promotes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme(A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BScontaining coating releases H2O2 at rates exceeding a target of 36 nmol·cm-2·d-1for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes,presenting an interesting avenue for enzyme-based antifouling solutions.
11-3270/TQ
Antifouling Bienzyme H2O2 Coating
ISSN:1004-9541
2210-321X
DOI:10.1016/j.cjche.2015.05.001