Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae)

Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibio...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 264; p. 115467
Main Authors Sun, Zeyang, Liu, Yue, Hou, Aoran, Han, Anqi, Yan, Chuncai, Sun, Jinsheng
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects. [Display omitted] •The larval development of chironomid was delayed by rifampin.•Rifampin induced intestinal microflora dysbiosis of chironomid larvae.•Rifampin exposure triggered obvious change of genes involved in amino acid synthesis and xenobiotic metabolism pathways.•Detoxifying P450 genes were positively related to the genus Tyzzerella in rifampin-challenged larvae.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2023.115467