SaTransformer: Semantic‐aware transformer for breast cancer classification and segmentation
Abstract Breast cancer classification and segmentation play an important role in identifying and detecting benign and malignant breast lesions. However, segmentation and classification still face many challenges: 1) The characteristics of cancer itself, such as fuzzy edges, complex backgrounds, and...
Saved in:
Published in | IET image processing Vol. 17; no. 13; pp. 3789 - 3800 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Breast cancer classification and segmentation play an important role in identifying and detecting benign and malignant breast lesions. However, segmentation and classification still face many challenges: 1) The characteristics of cancer itself, such as fuzzy edges, complex backgrounds, and significant changes in size, shape, and intensity distribution make accurate segment and classification challenges. 2) Existing methods ignore the potential relationship between classification and segmentation tasks, due to the classification and segmentation being treated as two separate tasks. To overcome these challenges, in this paper, a novel Semantic‐aware transformer (SaTransformer) for breast cancer classification and segmentation is proposed. Specifically, the SaTransformer enables doing the two takes simultaneously through one unified framework. Unlike existing well‐known methods, the segmentation and classification information are semantically interactive, reinforcing each other during feature representation learning and improving the ability of feature representation learning while consuming less memory and computational complexity. The SaTransformer is validated on two publicly available breast cancer datasets – BUSI and UDIAT. Experimental results and quantitative evaluations (accuracy: 97.97%, precision: 98.20%, DSC: 86.34%) demonstrate that the SaTransformer outperforms other state‐of‐the‐art methods. |
---|---|
ISSN: | 1751-9659 1751-9667 |
DOI: | 10.1049/ipr2.12897 |