Nuclear and mitochondrial genome datasets for spiny lobsters genus Panulirus (Decapoda: Achelata: Palinuridae)

Spiny lobsters (Decapoda: Palinuridae) in the genus Panulirus are targets of lucrative fisheries globally and have relevant ecological functions in tropical and subtropical environments. Only a few, but increasing, number of genetic and genomic resources exist for them. Nuclear and mitochondrial gen...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 55; p. 110588
Main Authors Baeza, J. Antonio, Baker, Alyssa, Childress, Michael, Pirro, Stacy
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.08.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spiny lobsters (Decapoda: Palinuridae) in the genus Panulirus are targets of lucrative fisheries globally and have relevant ecological functions in tropical and subtropical environments. Only a few, but increasing, number of genetic and genomic resources exist for them. Nuclear and mitochondrial genome assemblies can provide insights into their phylogenetic relationships and support fishery management strategies in species that are heavily exploited. Herein, using Illumina short reads whole genome sequencing, we assembled the nuclear and mitochondrial genomes of a total of 14 species. Genomic DNA was extracted from specimens deposited at Clemson University Crustacean Collection and sequenced in a HiSeq X Ten system. The number of paired-end (PE) reads generated for the different studied species varied between 219,917,346 in P. argus and 70,215,423 in P. cygnus. Nuclear and mitochondrial genomes were ‘de novo’ assembled. Nuclear genomes ranged between 1,624,400,357 bp in P. guttatus and 935,571,898 bp in P. cygnus with scaffold numbers varying between 466,583 in P. versicolor and 852,228 in P. longipes. Mitochondrial genomes varied between 15,613 bp and 15,768 bp in P. pascuensis and P. versicolor, respectively. The totality of the short reads, nuclear, and mitochondrial genome assemblies are available at NCBI's GenBank.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2024.110588