Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed

Numerical simulations of a cylindrical packed bed with tube to particle diameter ratio of 1.4, containing 10 particles, were performed to understand the effect of particle shape on pressure drop, heat transfer and reaction performance. Six particle shapes namely, cylinder as the reference, trilobe a...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 63; no. 1; pp. 366 - 377
Main Authors Karthik, G. M., Buwa, Vivek V.
Format Journal Article
LanguageEnglish
Published New York American Institute of Chemical Engineers 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Numerical simulations of a cylindrical packed bed with tube to particle diameter ratio of 1.4, containing 10 particles, were performed to understand the effect of particle shape on pressure drop, heat transfer and reaction performance. Six particle shapes namely, cylinder as the reference, trilobe and daisy having external shaping, hollow cylinder, cylcut, and 7‐hole cylinder including internal voids were chosen. Methane steam reforming reactions were considered for the heat transfer and reaction performance evaluation. The present study showed that the external shaping of particles offered lower pressure drop, but lower values of effectiveness factor indicating strong diffusion limitations. The internally shaped particles offered increased surface area, led to higher effectiveness factor and allowed to overcome the diffusion limitations. The effective heat transfer and effectiveness factor of the trilobe‐shaped particle per unit pressure drop was found to be the best among the particle shapes considered in the present work. © 2016 American Institute of Chemical Engineers AIChE J, 63: 366–377, 2017
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.15542