Design and experimental study of a micro-groove grinding wheel with spray cooling effect
The effectiveness of grinding fluid supply has a crucial impact on grinding quality and efficiency in high speed grinding. In order to improve the cooling and lubrication, through in-depth research of self-inhaling internal cooling method and intermittent grinding mechanism, a new spray cooling meth...
Saved in:
Published in | Chinese journal of aeronautics Vol. 27; no. 2; pp. 407 - 412 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The effectiveness of grinding fluid supply has a crucial impact on grinding quality and efficiency in high speed grinding. In order to improve the cooling and lubrication, through in-depth research of self-inhaling internal cooling method and intermittent grinding mechanism, a new spray cooling method used in high speed grinding is proposed. By referring to the structure of bowl- shaped dispersion disk, the grinding wheel matrix with atomization ability is designed; through studying heat transfer of droplet collision and the influence of micro-groove on the boiling heat transfer, grinding segment with micro-groove is designed to enhance the heat flux of coolant and achieve maximum heat transfer between droplets and grinding contact zone. High-speed grinding experiments on GH4169 with the developed grinding wheel are carried out. The results show that with the micro-groove grinding wheel just 5.4% of pump outlet flow rate and 0.5% of spindle energy is needed to reduce the grinding temperature to 200℃, which means the developed grinding wheel makes cooling high efficient and low energy consuming. |
---|---|
Bibliography: | Shi Chaofeng , Li Xun , Chen Zhitong (1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China ;2.China Precision Engineering Institute for Aircraft Industry, Beijing 100076, China) The effectiveness of grinding fluid supply has a crucial impact on grinding quality and efficiency in high speed grinding. In order to improve the cooling and lubrication, through in-depth research of self-inhaling internal cooling method and intermittent grinding mechanism, a new spray cooling method used in high speed grinding is proposed. By referring to the structure of bowl- shaped dispersion disk, the grinding wheel matrix with atomization ability is designed; through studying heat transfer of droplet collision and the influence of micro-groove on the boiling heat transfer, grinding segment with micro-groove is designed to enhance the heat flux of coolant and achieve maximum heat transfer between droplets and grinding contact zone. High-speed grinding experiments on GH4169 with the developed grinding wheel are carried out. The results show that with the micro-groove grinding wheel just 5.4% of pump outlet flow rate and 0.5% of spindle energy is needed to reduce the grinding temperature to 200℃, which means the developed grinding wheel makes cooling high efficient and low energy consuming. Cooling;Droplet;Grinding;Micro grooveSpray cooling 11-1732/V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1000-9361 |
DOI: | 10.1016/j.cja.2013.07.013 |