Variable Filtered-Waveform Variational Mode Decomposition and Its Application in Rolling Bearing Fault Feature Extraction
Variational Mode Decomposition (VMD) serves as an effective method for simultaneously decomposing signals into a series of narrowband components. However, its theoretical foundation, the classical Wiener filter, exhibits limited adaptability when applied to broadband signals. This paper proposes a n...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 27; no. 3; p. 277 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.03.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Variational Mode Decomposition (VMD) serves as an effective method for simultaneously decomposing signals into a series of narrowband components. However, its theoretical foundation, the classical Wiener filter, exhibits limited adaptability when applied to broadband signals. This paper proposes a novel Variable Filtered-Waveform Variational Mode Decomposition (VFW-VMD) method to address critical limitations in VMD, particularly in handling broadband and chirp signals. By incorporating fractional-order constraints and dynamically adjusting filter waveforms, the proposed algorithm effectively mitigates mode mixing and over-smoothing issues. The mathematical framework of VFW-VMD is formulated, and its decomposition performance is validated through simulations involving both synthetic and real-world signals. The results demonstrate that VFW-VMD exhibits superior adaptability in extracting broadband signals and effectively captures more rolling bearing fault features. This work advances signal processing techniques, enhancing capability and significantly improving the performance of practical bearing fault diagnostic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e27030277 |