Development to the blastocyst stage of immature pig oocytes arrested before the metaphase-II stage and fertilized in vitro

In vitro fertilization (IVF) and embryonic development of mature and meiotically arrested porcine oocytes were compared in the present study. After in vitro maturation (IVM) of cumulus-oocyte complexes for 48 h, 75.4% of them extruded a visible polar body (PB). Most of the oocytes with a first polar...

Full description

Saved in:
Bibliographic Details
Published inAnimal reproduction science Vol. 90; no. 3; pp. 307 - 328
Main Authors Somfai, Tamás, Kikuchi, Kazuhiro, Medvedev, Sergey, Onishi, Akira, Iwamoto, Masaki, Fuchimoto, Dai-ichiro, Ozawa, Manabu, Noguchi, Junko, Kaneko, Hiroyuki, Ohnuma, Katsuhiko, Sato, Eimei, Nagai, Takashi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In vitro fertilization (IVF) and embryonic development of mature and meiotically arrested porcine oocytes were compared in the present study. After in vitro maturation (IVM) of cumulus-oocyte complexes for 48 h, 75.4% of them extruded a visible polar body (PB). Most of the oocytes with a first polar body (PB+ group) were at the metaphase-II (M-II) stage (91.4%). Most of the oocytes without a visible polar body (PB− group) appeared to be arrested at the germinal vesicle (GV) (41.6%) and metaphase-I (M-I) (34.0%) stages. After IVF of oocytes (day of IVF = Day 0), there was no difference between PB + and PB − groups in rates of sperm penetration, mono-spermy, however oocyte activation rate after penetration was greater in the PB+ than in the PB− group ( P < 0.05). On Day 2, there was no difference between rates of embryos cleaved at the 2–4 cell stages in PB+ and PB− groups (42.1 ± 48.8% and 33.6 ± 2.1%, respectively). On Day 4, the rate of PB+ embryos developing beyond the 4-cell stage was greater than that of PB− embryos ( P < 0.05, 31.7 ± 3.9% and 14.1 ± 1.5%, respectively), and PB+ embryos had more cells than the PB− embryos ( P < 0.05, 8.3 ± 0.4 and 6.0 ± 0.8 cells, respectively). On Day 6, a greater proportion of PB+ embryos developed to the blastocyst stage than did PB− embryos ( P < 0.05, 34.6 ± 2.4% and 20.7 ± 2.8%, respectively). However, when the GV oocytes of the PB− group were not included in recalculations, there was no difference in blastocyst rates between M-I arrested and M-II oocytes (35.3 and 34.6%, respectively). The number of blastomere nuclei in embryos obtained from the PB+ group (52.0 ± 2.5) was greater than that from the PB− group ( P < 0.05, 29.1 ± 2.8). The proportion of degenerated parts in the blastocysts, as determined by morphological appearance, was the same in the PB+ and PB− groups. Although the quality of PB+ embryos was enhanced as compared with that of the PB− group, the proportion of inner cell mass and trophectoderm cells in PB+ and PB− blastocysts did not differ (1:1.9 and 1:2.2, respectively). Chromosome analysis revealed that PB+ blastocysts had more diploidy ( P < 0.05, 69.7%) than did PB− blastocysts (44.0%), whereas PB− blastocysts had more triploid cells ( P < 0.05, 34.0%) than did PB+ oocytes (8.4%). These results indicate that pig oocytes arrested before the M-II stage (M-I oocytes) undergo cytoplasmic maturation during maturation culture and have the same ability to develop to blastocysts after IVF as M-II oocytes, but some of them resulted in degeneration or delayed development with poor embryo quality.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-4320
1873-2232
DOI:10.1016/j.anireprosci.2005.03.018