Contrast U-Net driven by sufficient texture extraction for carotid plaque detection
Ischemic heart disease or stroke caused by the rupture or dislodgement of a carotid plaque poses a huge risk to human health. To obtain accurate information on the carotid plaque characteristics of patients and to assist clinicians in the determination and identification of atherosclerotic areas, wh...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 20; no. 9; pp. 15623 - 15640 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ischemic heart disease or stroke caused by the rupture or dislodgement of a carotid plaque poses a huge risk to human health. To obtain accurate information on the carotid plaque characteristics of patients and to assist clinicians in the determination and identification of atherosclerotic areas, which is one significant foundation work. Existing work in this field has not deliberately extracted texture information of carotid from the ultrasound images. However, texture information is a very important part of carotid ultrasound images. To make full use of the texture information in carotid ultrasound images, a novel network based on U-Net called Contrast U-Net is designed in this paper. First, the proposed network mainly relies on a contrast block to extract accurate texture information. Moreover, to make the network better learn the texture information of each channel, the squeeze-and-excitation block is introduced to assist in the jump connection from encoding to decoding. Experimental results from intravascular ultrasound image datasets show that the proposed network can achieve superior performance compared with other popular models in carotid plaque detection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2023697 |