A concise finite element model for simple straight wire rope strand

Due to its complex geometry, a wire in a rope is subjected to the combined effects of tension, shear, bending, torsion, contact, friction and possible local plastic yielding when loaded. In this paper an accurate and general strand model using the finite element method (FEM) is presented. The model...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanical sciences Vol. 41; no. 2; pp. 143 - 161
Main Authors Jiang, W.G., Yao, M.S., Walton, J.M.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.1999
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to its complex geometry, a wire in a rope is subjected to the combined effects of tension, shear, bending, torsion, contact, friction and possible local plastic yielding when loaded. In this paper an accurate and general strand model using the finite element method (FEM) is presented. The model is capable of taking into account all the above effects and has been successfully used to predict the global behaviour of simple straight wire rope strand as well as the stress distribution within the wires under axial loads (tensile and torsional). In simplifying the finite element model, precise boundary conditions were developed. The finite element analysis results showed excellent agreement with the analytical theory of Costello and the experimental results of Utting and Jones. By using the model developed in this paper, localised highly non-linear phenomena such as contact stress, residual stress, friction and plastic deformation can be studied effectively.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7403
1879-2162
DOI:10.1016/S0020-7403(98)00039-3