Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear

Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti partic...

Full description

Saved in:
Bibliographic Details
Published inMaterials characterization Vol. 61; no. 11; pp. 1126 - 1134
Main Authors Mordyuk, B.N., Silberschmidt, V.V., Prokopenko, G.I., Nesterenko, Yu.V., Iefimov, M.O.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.11.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400 nm, while reinforcement with larger particles results in relatively large Al grains (1–2 μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti 3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1044-5803
1873-4189
DOI:10.1016/j.matchar.2010.07.007