Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott-Aldrich Syndrome Patients Leads to Functional Correction
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with a median survival below the age of 20 due to infections, severe hemorrhage, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical sibling donors is a resolutive treatment, but is available for a minor...
Saved in:
Published in | Molecular therapy Vol. 10; no. 5; pp. 903 - 915 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Limited
01.11.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency with a median survival below the age of 20 due to infections, severe hemorrhage, and lymphomas. Transplantation of hematopoietic stem cells from HLA-identical sibling donors is a resolutive treatment, but is available for a minority of patients. Transplantation of genetically corrected autologous hematopoietic stem cells or T cells could represent an alternative treatment applicable to all patients. We investigated whether WAS gene transfer with MMLV-based oncoretroviral and HIV-based lentiviral vectors could restore normal functions of patients' T cells. T cells transduced either with lentiviral vectors expressing the WAS protein (WASP) from the ubiquitous PGK promoter or the tissue-specific WASP promoter or with an oncoretroviral vector expressing WASP from the LTR, reached normal levels of WASP with correction of functional defects, including proliferation, IL-2 production, and lipid raft upregulation. Lentiviral vectors transduced T cells from WAS patients at higher rates, compared to oncoretroviral vectors, and efficiently transduced both activated and naive WAS T cells. Furthermore, a selective growth advantage of T cells corrected with the lentiviral vectors was demonstrated. The observation that lentiviral vector-mediated gene transfer results in correction of T cell defects in vitro supports their application for gene therapy in WAS patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-0016 1525-0024 |
DOI: | 10.1016/j.ymthe.2004.08.008 |