Optical properties of porcine skin dermis between 900 nm and 1500 nm
The weak absorption of shortwave infrared light by skin tissues between 700 and 1500 nm offers an important window for diagnosis by optical means. The strong scattering of shortwave infrared light by the skin, however, presents a challenge to the modelling of light propagation through the skin and t...
Saved in:
Published in | Physics in medicine & biology Vol. 46; no. 1; pp. 167 - 181 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2001
Institute of Physics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The weak absorption of shortwave infrared light by skin tissues between 700 and 1500 nm offers an important window for diagnosis by optical means. The strong scattering of shortwave infrared light by the skin, however, presents a challenge to the modelling of light propagation through the skin and the understanding of skin optics. We have measured the collimated and diffuse transmittance and diffuse reflectance of porcine skin dermis samples within 30 h post-mortem. Monte Carlo simulations have been performed to inversely determine the absorption coefficient, scattering coefficient and anisotropy factor of the dermis samples in the spectral range from 900 to 1500 nm. We further analyse the sensitivity of the values of the parameters to the experimental errors and inverse calculation procedures. The state of the cellular integrity of the skin samples following optical measurements was verified using transmission electron microscopy. These results were correlated to study post-mortem effects on the in vitro optical properties of porcine dermis. We concluded that for samples stored within crushed ice for up to 30 h post-mortem the wavelength dependence of optical properties of the dermis remains unchanged while the values of the parameters vary moderately due to modification of the water content of the tissue. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9155 1361-6560 |
DOI: | 10.1088/0031-9155/46/1/312 |