Identification of common sensory features for the control of CNC milling operations under varying cutting conditions

The main focus of this study is to identify the most influential and common sensory features for the process quality characteristics in CNC milling operations—dimensional accuracy (bore size tolerance) and surface roughness—using three different material types (6061-T6 aluminum, 7075-T6 aluminum, an...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine tools & manufacture Vol. 43; no. 9; pp. 897 - 904
Main Authors Ertekin, Yalcin M., Kwon, Yongjin, Tseng, Tzu-Liang (Bill)
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2003
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The main focus of this study is to identify the most influential and common sensory features for the process quality characteristics in CNC milling operations—dimensional accuracy (bore size tolerance) and surface roughness—using three different material types (6061-T6 aluminum, 7075-T6 aluminum, and ANSI-4140 steel). The materials were machined on a vertical CNC mill, retrofitted with multiple sensors and data acquisition systems, to investigate the effects of variations in material types and machining parameters. The sensor data include cutting force measurements, spindle quill vibration, and acoustic emission, each of which further divided into measurable components, such as x, y, and z components in cutting force, x and y spindle quill vibration, DC, AC, and Count Rate for acoustic emission signals. Those components were filtered and analyzed to determine the sensory features that best correlate with process quality characteristics. Tool wear rate and machining characteristics appeared differently, depending on the material types, yet some components of the sensory data were found to be significant with relation to the variations in bore size and surface roughness for all three types of materials. This suggests that even under the varying cutting conditions involving different materials, the identified sensory features can be used for the reliable and accurate control of milling operations.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0890-6955
1879-2170
DOI:10.1016/S0890-6955(03)00087-7