Stacking ensemble transfer learning based thermal displacement prediction system

In the precision machining industry, machine tools are usually affected by various factors during machining, and various machining errors generated accordingly. Where thermal error is one of the most common and difficult to control factors for machine tools. Therefore, in this study, six temperature...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of optomechatronics Vol. 17; no. 1
Main Authors Kuo, Ping-Huan, Lee, Chia-Ho, Yau, Her-Terng
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the precision machining industry, machine tools are usually affected by various factors during machining, and various machining errors generated accordingly. Where thermal error is one of the most common and difficult to control factors for machine tools. Therefore, in this study, six temperature sensors and an eddy current displacement meter are provided in a machine tool with 4-axis for dataset collection required for the model training, then data are organized and normalized. Next, data are introduced into a variety of learning models and validated by k -Fold cross-validation for predicting those nonlinear factors that affect the errors. At the end, predicted results are summarized and compared to find out the best two model with better predictive performance for pre-trained model of transfer learning. It observes better predicted results from a retraining conducted through applying Multilayer Perceptron (MLP) on these two pre-trained models, wherein MAE value as 0.40, RMSE as 0.52625 and R 2 score as 0.99696 respectively.
ISSN:1559-9612
1559-9620
DOI:10.1080/15599612.2023.2225573