Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness
In a paper by Willems et al., it was shown that persistently exciting data can be used to represent the input-output behavior of a linear system. Based on this fundamental result, we derive a parametrization of linear feedback systems that paves the way to solve important control problems using data...
Saved in:
Published in | IEEE transactions on automatic control Vol. 65; no. 3; pp. 909 - 924 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In a paper by Willems et al., it was shown that persistently exciting data can be used to represent the input-output behavior of a linear system. Based on this fundamental result, we derive a parametrization of linear feedback systems that paves the way to solve important control problems using data-dependent linear matrix inequalities only. The result is remarkable in that no explicit system's matrices identification is required. The examples of control problems we solve include the state and output feedback stabilization, and the linear quadratic regulation problem. We also discuss robustness to noise-corrupted measurements and show how the approach can be used to stabilize unstable equilibria of nonlinear systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2019.2959924 |