Estimating the power spectrum covariance matrix with fewer mock samples
The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will req...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 457; no. 1; pp. 993 - 999 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Oxford University Press
21.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ∼100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function. |
---|---|
AbstractList | The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ∼100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function. The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ~100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function. |
Author | Pearson, David W. Samushia, Lado |
Author_xml | – sequence: 1 givenname: David W. surname: Pearson fullname: Pearson, David W. email: dpearson@phys.ksu.edu organization: 1Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA – sequence: 2 givenname: Lado surname: Samushia fullname: Samushia, Lado organization: 1Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA |
BookMark | eNqN0bFOwzAQgGELFYm2sPEAlhhgINSOY8ceUVUKUiUWmC3HsWlKEgfbofD2pISJATHd8umku38GJq1rDQDnGN1gJMiiab0KixD3iKVHYIoJo0kqGJuAKUKEJjzH-ATMQtghhDKSsilYr0KsGhWr9gXGrYGd2xsPQ2d09H0DtXtXvlKtNnBAvvqA-ypuoTUH1Tj9CoNqutqEU3BsVR3M2c-cg-e71dPyPtk8rh-Wt5tEEyFiwqkpM8GtzUleYKERtSg3Zal5mRY8Q1axgmaizDnFNqU5Y5hzIQwrMDeEMDIHV-Pezru33oQomypoU9eqNa4PEnPMEOGUkn9QxBnFJD3Qi19053rfDodInAuUZ1nG0kFdj0p7F4I3VnZ--J3_lBjJQwD5HUCOAQZ-OXLXd3_LLy5iiSE |
CitedBy_id | crossref_primary_10_1093_mnras_stae1134 crossref_primary_10_1088_1475_7516_2017_06_053 crossref_primary_10_1093_mnras_stac2313 crossref_primary_10_1088_1475_7516_2022_12_022 crossref_primary_10_1051_0004_6361_201630281 crossref_primary_10_3847_1538_4357_aae833 crossref_primary_10_1093_mnras_sty1340 crossref_primary_10_1093_mnras_sty1266 crossref_primary_10_1093_mnras_sty2036 crossref_primary_10_1088_1475_7516_2019_01_016 crossref_primary_10_1093_mnras_stx2342 crossref_primary_10_1051_0004_6361_202245618 crossref_primary_10_1088_1475_7516_2021_03_105 crossref_primary_10_1088_1475_7516_2020_05_032 crossref_primary_10_1093_mnras_staa1940 crossref_primary_10_3847_1538_4357_ad3215 crossref_primary_10_1093_mnras_stac1837 crossref_primary_10_1093_mnras_stw1042 crossref_primary_10_1093_mnras_stw2177 crossref_primary_10_1093_mnras_sty1971 crossref_primary_10_1093_mnrasl_slw240 crossref_primary_10_1103_PhysRevD_103_043508 crossref_primary_10_1103_PhysRevD_102_123517 crossref_primary_10_1093_mnras_stw1821 crossref_primary_10_1093_mnras_stz1359 crossref_primary_10_1093_mnras_stz3218 crossref_primary_10_3390_galaxies4040053 |
Cites_doi | 10.1051/0004-6361:20066170 10.1046/j.1365-8711.2002.04999.x 10.1088/0004-6256/142/3/72 10.1111/j.1365-2966.2012.21573.x 10.1086/308059 10.1103/PhysRevD.88.063537 10.1016/S0370-1573(02)00135-7 10.1093/mnras/stt907 10.1093/mnras/stt2071 10.1093/mnras/stv645 10.1103/PhysRevD.71.063001 10.1046/j.1365-8711.2002.05162.x 10.1088/1475-7516/2013/06/036 10.1088/0004-637X/737/1/11 10.1093/mnras/stv961 10.1093/mnras/stu2465 10.1086/174036 10.1093/mnras/stu1972 10.1111/j.1745-3933.2010.00835.x 10.1088/0004-6256/145/1/10 10.1111/j.1365-2966.2008.13561.x 10.1093/mnras/sts084 10.1093/mnras/stt270 10.1103/PhysRevLett.79.3806 10.1093/mnrasl/slt172 10.1111/j.1365-2966.2006.10710.x 10.1093/mnras/stu112 10.1093/mnras/stu759 10.1093/mnras/stv1289 10.1103/PhysRevD.74.023522 10.1086/307448 10.1051/0004-6361/201321463 10.1111/j.1365-2966.2005.09318.x 10.1093/mnras/248.1.1 10.1103/PhysRevD.87.123504 10.1093/mnras/stv2259 10.1086/497090 10.1093/mnras/stv984 10.1088/1475-7516/2012/04/019 10.1093/mnras/stu523 10.1111/j.1365-2966.2009.14389.x 10.1093/mnras/stu996 10.1111/j.1365-2966.2006.10709.x 10.1111/j.1365-2966.2011.19250.x 10.1088/0004-637X/700/1/479 10.1046/j.1365-8711.1999.02825.x |
ContentType | Journal Article |
Copyright | 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016 Copyright Oxford University Press, UK Mar 21, 2016 |
Copyright_xml | – notice: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016 – notice: Copyright Oxford University Press, UK Mar 21, 2016 |
DBID | AAYXX CITATION 8FD H8D L7M 7TG KL. |
DOI | 10.1093/mnras/stw062 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 999 |
ExternalDocumentID | 4065623351 10_1093_mnras_stw062 10.1093/mnras/stw062 |
Genre | Feature |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION 8FD ABEJV H8D L7M 7TG KL. |
ID | FETCH-LOGICAL-c399t-85ed498ff737b19c05f07eddc8d2b840fa6b549d7851f2576618899e6b18e3363 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Fri Oct 25 07:37:10 EDT 2024 Fri Oct 25 05:12:57 EDT 2024 Tue Nov 05 20:37:55 EST 2024 Thu Sep 12 18:44:26 EDT 2024 Wed Sep 11 04:48:38 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | methods: data analysis galaxies: statistics cosmological parameters large-scale structure of Universe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-85ed498ff737b19c05f07eddc8d2b840fa6b549d7851f2576618899e6b18e3363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/mnras/article-pdf/457/1/993/18169038/stw062.pdf |
PQID | 1790744462 |
PQPubID | 42411 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1816038553 proquest_miscellaneous_1808651323 proquest_journals_1790744462 crossref_primary_10_1093_mnras_stw062 oup_primary_10_1093_mnras_stw062 |
PublicationCentury | 2000 |
PublicationDate | 2016-03-21 |
PublicationDateYYYYMMDD | 2016-03-21 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Tassev (2016012718193279000_457.1.993.48) 2013; 6 2016012718193279000_457.1.993.34 2016012718193279000_457.1.993.33 2016012718193279000_457.1.993.36 2016012718193279000_457.1.993.35 2016012718193279000_457.1.993.38 2016012718193279000_457.1.993.37 2016012718193279000_457.1.993.39 Kitaura (2016012718193279000_457.1.993.19) 2015; 450 2016012718193279000_457.1.993.30 2016012718193279000_457.1.993.32 Chuang (2016012718193279000_457.1.993.5) 2015; 452 2016012718193279000_457.1.993.23 2016012718193279000_457.1.993.22 2016012718193279000_457.1.993.25 2016012718193279000_457.1.993.27 2016012718193279000_457.1.993.26 2016012718193279000_457.1.993.29 2016012718193279000_457.1.993.28 2016012718193279000_457.1.993.21 2016012718193279000_457.1.993.20 2016012718193279000_457.1.993.2 2016012718193279000_457.1.993.3 Gil-Marín (2016012718193279000_457.1.993.15) 2015; 451 2016012718193279000_457.1.993.1 2016012718193279000_457.1.993.6 2016012718193279000_457.1.993.7 2016012718193279000_457.1.993.4 2016012718193279000_457.1.993.12 2016012718193279000_457.1.993.11 2016012718193279000_457.1.993.14 2016012718193279000_457.1.993.13 2016012718193279000_457.1.993.16 White (2016012718193279000_457.1.993.52) 2014; 437 2016012718193279000_457.1.993.18 2016012718193279000_457.1.993.17 Manera (2016012718193279000_457.1.993.24) 2015; 447 2016012718193279000_457.1.993.50 2016012718193279000_457.1.993.51 2016012718193279000_457.1.993.53 de Putter (2016012718193279000_457.1.993.10) 2012; 4 Paz (2016012718193279000_457.1.993.31) 2015; 454 2016012718193279000_457.1.993.45 2016012718193279000_457.1.993.44 2016012718193279000_457.1.993.47 2016012718193279000_457.1.993.46 2016012718193279000_457.1.993.49 2016012718193279000_457.1.993.8 2016012718193279000_457.1.993.9 2016012718193279000_457.1.993.41 2016012718193279000_457.1.993.40 2016012718193279000_457.1.993.43 2016012718193279000_457.1.993.42 |
References_xml | – ident: 2016012718193279000_457.1.993.17 doi: 10.1051/0004-6361:20066170 – ident: 2016012718193279000_457.1.993.40 doi: 10.1046/j.1365-8711.2002.04999.x – ident: 2016012718193279000_457.1.993.12 doi: 10.1088/0004-6256/142/3/72 – ident: 2016012718193279000_457.1.993.53 doi: 10.1111/j.1365-2966.2012.21573.x – ident: 2016012718193279000_457.1.993.41 doi: 10.1086/308059 – ident: 2016012718193279000_457.1.993.11 doi: 10.1103/PhysRevD.88.063537 – ident: 2016012718193279000_457.1.993.3 doi: 10.1016/S0370-1573(02)00135-7 – ident: 2016012718193279000_457.1.993.14 – ident: 2016012718193279000_457.1.993.29 doi: 10.1093/mnras/stt907 – ident: 2016012718193279000_457.1.993.37 – volume: 437 start-page: 2594 year: 2014 ident: 2016012718193279000_457.1.993.52 publication-title: MNRAS doi: 10.1093/mnras/stt2071 contributor: fullname: White – volume: 450 start-page: 1836 year: 2015 ident: 2016012718193279000_457.1.993.19 publication-title: MNRAS doi: 10.1093/mnras/stv645 contributor: fullname: Kitaura – ident: 2016012718193279000_457.1.993.42 doi: 10.1103/PhysRevD.71.063001 – ident: 2016012718193279000_457.1.993.28 doi: 10.1046/j.1365-8711.2002.05162.x – volume: 6 start-page: 36 year: 2013 ident: 2016012718193279000_457.1.993.48 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2013/06/036 contributor: fullname: Tassev – ident: 2016012718193279000_457.1.993.38 doi: 10.1088/0004-637X/737/1/11 – volume: 451 start-page: 5058 year: 2015 ident: 2016012718193279000_457.1.993.15 publication-title: MNRAS doi: 10.1093/mnras/stv961 contributor: fullname: Gil-Marín – volume: 447 start-page: 437 year: 2015 ident: 2016012718193279000_457.1.993.24 publication-title: MNRAS doi: 10.1093/mnras/stu2465 contributor: fullname: Manera – ident: 2016012718193279000_457.1.993.13 doi: 10.1086/174036 – ident: 2016012718193279000_457.1.993.27 doi: 10.1093/mnras/stu1972 – ident: 2016012718193279000_457.1.993.34 doi: 10.1111/j.1745-3933.2010.00835.x – ident: 2016012718193279000_457.1.993.8 doi: 10.1088/0004-6256/145/1/10 – ident: 2016012718193279000_457.1.993.33 doi: 10.1111/j.1365-2966.2008.13561.x – ident: 2016012718193279000_457.1.993.23 doi: 10.1093/mnras/sts084 – ident: 2016012718193279000_457.1.993.50 doi: 10.1093/mnras/stt270 – ident: 2016012718193279000_457.1.993.51 doi: 10.1103/PhysRevLett.79.3806 – ident: 2016012718193279000_457.1.993.18 doi: 10.1093/mnrasl/slt172 – ident: 2016012718193279000_457.1.993.35 doi: 10.1111/j.1365-2966.2006.10710.x – ident: 2016012718193279000_457.1.993.32 doi: 10.1093/mnras/stu112 – ident: 2016012718193279000_457.1.993.20 – ident: 2016012718193279000_457.1.993.46 doi: 10.1093/mnras/stu759 – volume: 452 start-page: 686 year: 2015 ident: 2016012718193279000_457.1.993.5 publication-title: MNRAS doi: 10.1093/mnras/stv1289 contributor: fullname: Chuang – ident: 2016012718193279000_457.1.993.43 doi: 10.1103/PhysRevD.74.023522 – ident: 2016012718193279000_457.1.993.39 doi: 10.1086/307448 – ident: 2016012718193279000_457.1.993.9 doi: 10.1051/0004-6361/201321463 – ident: 2016012718193279000_457.1.993.6 doi: 10.1111/j.1365-2966.2005.09318.x – ident: 2016012718193279000_457.1.993.7 doi: 10.1093/mnras/248.1.1 – ident: 2016012718193279000_457.1.993.21 – ident: 2016012718193279000_457.1.993.45 doi: 10.1103/PhysRevD.87.123504 – volume: 454 start-page: 4326 year: 2015 ident: 2016012718193279000_457.1.993.31 publication-title: MNRAS doi: 10.1093/mnras/stv2259 contributor: fullname: Paz – ident: 2016012718193279000_457.1.993.44 doi: 10.1086/497090 – ident: 2016012718193279000_457.1.993.25 doi: 10.1093/mnras/stv984 – volume: 4 start-page: 19 year: 2012 ident: 2016012718193279000_457.1.993.10 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2012/04/019 contributor: fullname: de Putter – ident: 2016012718193279000_457.1.993.2 doi: 10.1093/mnras/stu523 – ident: 2016012718193279000_457.1.993.36 – ident: 2016012718193279000_457.1.993.30 doi: 10.1111/j.1365-2966.2009.14389.x – ident: 2016012718193279000_457.1.993.49 doi: 10.1093/mnras/stu996 – ident: 2016012718193279000_457.1.993.1 – ident: 2016012718193279000_457.1.993.16 doi: 10.1111/j.1365-2966.2006.10709.x – ident: 2016012718193279000_457.1.993.4 doi: 10.1111/j.1365-2966.2011.19250.x – ident: 2016012718193279000_457.1.993.22 – ident: 2016012718193279000_457.1.993.47 doi: 10.1088/0004-637X/700/1/479 – ident: 2016012718193279000_457.1.993.26 doi: 10.1046/j.1365-8711.1999.02825.x |
SSID | ssj0004326 |
Score | 2.4567626 |
Snippet | The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 993 |
SubjectTerms | Accuracy Astronomy Catalogues Convergence Covariance Covariance matrix Estimating Galaxies Inverse Mathematical models Matrix Star & galaxy formation |
Title | Estimating the power spectrum covariance matrix with fewer mock samples |
URI | https://www.proquest.com/docview/1790744462 https://search.proquest.com/docview/1808651323 https://search.proquest.com/docview/1816038553 |
Volume | 457 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA6ykxfRqWw6JYJ6K2ubJk2PY2wOQb1ssFtp2kQE245188d_73tpp0zEXUpLXqG8_Oj3vZd8j5BrYyRMGuY6AUtDBxBx5iiDF0ziAaDnbmo3yD6KySy4n_N5I5JU_ZHCj1g_L5ZJ1a9W765da1ERDcbt9Gn-c_6R2bJqVn4RCIDXbHD__fLWr2frONtm_bU_lfEhOWjQIB3U3XdE9nTRJp1BhfHpMv-kt9Te1-GHqk26D4Bxy6UNhUPj8PUFAKd9OiZ3I5itiD-LZwqoji6w_hm1JymX65ym5RvQYuxjmqMs_wfFECw1Gq1yWBVplaBScHVCZuPRdDhxmjIJTgroYuVIrrMgksaELFRelLrcuKHOslRmvgL-ZhKhgAVmIYArg_xCeBJYlhbKk5oxwU5JqygL3SHUU8K4hgfKAFExvi-z0FM8SgEjKOkHoktuNh6MF7UaRlxnsVlsPR3Xnu4SCu7dYdLb-D5upk0Vo1xYGABDhear72YY8JjFSApdrsFGAgvjQKLZfzZYPVtyzs52f8k52QcUJHBjme_1SAs6RV8A0lipSzvMvgAjSdNC |
link.rule.ids | 315,783,787,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+power+spectrum+covariance+matrix+with+fewer+mock+samples&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pearson%2C+David+W&rft.au=Samushia%2C+Lado&rft.date=2016-03-21&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=457&rft.issue=1&rft.spage=993&rft_id=info:doi/10.1093%2Fmnras%2Fstw062&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4065623351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |