Estimating the power spectrum covariance matrix with fewer mock samples

The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will req...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 457; no. 1; pp. 993 - 999
Main Authors Pearson, David W., Samushia, Lado
Format Journal Article
LanguageEnglish
Published London Oxford University Press 21.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ∼100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function.
AbstractList The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ∼100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function.
The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ~100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function.
Author Pearson, David W.
Samushia, Lado
Author_xml – sequence: 1
  givenname: David W.
  surname: Pearson
  fullname: Pearson, David W.
  email: dpearson@phys.ksu.edu
  organization: 1Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA
– sequence: 2
  givenname: Lado
  surname: Samushia
  fullname: Samushia, Lado
  organization: 1Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA
BookMark eNqN0bFOwzAQgGELFYm2sPEAlhhgINSOY8ceUVUKUiUWmC3HsWlKEgfbofD2pISJATHd8umku38GJq1rDQDnGN1gJMiiab0KixD3iKVHYIoJo0kqGJuAKUKEJjzH-ATMQtghhDKSsilYr0KsGhWr9gXGrYGd2xsPQ2d09H0DtXtXvlKtNnBAvvqA-ypuoTUH1Tj9CoNqutqEU3BsVR3M2c-cg-e71dPyPtk8rh-Wt5tEEyFiwqkpM8GtzUleYKERtSg3Zal5mRY8Q1axgmaizDnFNqU5Y5hzIQwrMDeEMDIHV-Pezru33oQomypoU9eqNa4PEnPMEOGUkn9QxBnFJD3Qi19053rfDodInAuUZ1nG0kFdj0p7F4I3VnZ--J3_lBjJQwD5HUCOAQZ-OXLXd3_LLy5iiSE
CitedBy_id crossref_primary_10_1093_mnras_stae1134
crossref_primary_10_1088_1475_7516_2017_06_053
crossref_primary_10_1093_mnras_stac2313
crossref_primary_10_1088_1475_7516_2022_12_022
crossref_primary_10_1051_0004_6361_201630281
crossref_primary_10_3847_1538_4357_aae833
crossref_primary_10_1093_mnras_sty1340
crossref_primary_10_1093_mnras_sty1266
crossref_primary_10_1093_mnras_sty2036
crossref_primary_10_1088_1475_7516_2019_01_016
crossref_primary_10_1093_mnras_stx2342
crossref_primary_10_1051_0004_6361_202245618
crossref_primary_10_1088_1475_7516_2021_03_105
crossref_primary_10_1088_1475_7516_2020_05_032
crossref_primary_10_1093_mnras_staa1940
crossref_primary_10_3847_1538_4357_ad3215
crossref_primary_10_1093_mnras_stac1837
crossref_primary_10_1093_mnras_stw1042
crossref_primary_10_1093_mnras_stw2177
crossref_primary_10_1093_mnras_sty1971
crossref_primary_10_1093_mnrasl_slw240
crossref_primary_10_1103_PhysRevD_103_043508
crossref_primary_10_1103_PhysRevD_102_123517
crossref_primary_10_1093_mnras_stw1821
crossref_primary_10_1093_mnras_stz1359
crossref_primary_10_1093_mnras_stz3218
crossref_primary_10_3390_galaxies4040053
Cites_doi 10.1051/0004-6361:20066170
10.1046/j.1365-8711.2002.04999.x
10.1088/0004-6256/142/3/72
10.1111/j.1365-2966.2012.21573.x
10.1086/308059
10.1103/PhysRevD.88.063537
10.1016/S0370-1573(02)00135-7
10.1093/mnras/stt907
10.1093/mnras/stt2071
10.1093/mnras/stv645
10.1103/PhysRevD.71.063001
10.1046/j.1365-8711.2002.05162.x
10.1088/1475-7516/2013/06/036
10.1088/0004-637X/737/1/11
10.1093/mnras/stv961
10.1093/mnras/stu2465
10.1086/174036
10.1093/mnras/stu1972
10.1111/j.1745-3933.2010.00835.x
10.1088/0004-6256/145/1/10
10.1111/j.1365-2966.2008.13561.x
10.1093/mnras/sts084
10.1093/mnras/stt270
10.1103/PhysRevLett.79.3806
10.1093/mnrasl/slt172
10.1111/j.1365-2966.2006.10710.x
10.1093/mnras/stu112
10.1093/mnras/stu759
10.1093/mnras/stv1289
10.1103/PhysRevD.74.023522
10.1086/307448
10.1051/0004-6361/201321463
10.1111/j.1365-2966.2005.09318.x
10.1093/mnras/248.1.1
10.1103/PhysRevD.87.123504
10.1093/mnras/stv2259
10.1086/497090
10.1093/mnras/stv984
10.1088/1475-7516/2012/04/019
10.1093/mnras/stu523
10.1111/j.1365-2966.2009.14389.x
10.1093/mnras/stu996
10.1111/j.1365-2966.2006.10709.x
10.1111/j.1365-2966.2011.19250.x
10.1088/0004-637X/700/1/479
10.1046/j.1365-8711.1999.02825.x
ContentType Journal Article
Copyright 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016
Copyright Oxford University Press, UK Mar 21, 2016
Copyright_xml – notice: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016
– notice: Copyright Oxford University Press, UK Mar 21, 2016
DBID AAYXX
CITATION
8FD
H8D
L7M
7TG
KL.
DOI 10.1093/mnras/stw062
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList
Technology Research Database
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 999
ExternalDocumentID 4065623351
10_1093_mnras_stw062
10.1093/mnras/stw062
Genre Feature
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
8FD
ABEJV
H8D
L7M
7TG
KL.
ID FETCH-LOGICAL-c399t-85ed498ff737b19c05f07eddc8d2b840fa6b549d7851f2576618899e6b18e3363
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Fri Oct 25 07:37:10 EDT 2024
Fri Oct 25 05:12:57 EDT 2024
Tue Nov 05 20:37:55 EST 2024
Thu Sep 12 18:44:26 EDT 2024
Wed Sep 11 04:48:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords methods: data analysis
galaxies: statistics
cosmological parameters
large-scale structure of Universe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-85ed498ff737b19c05f07eddc8d2b840fa6b549d7851f2576618899e6b18e3363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/mnras/article-pdf/457/1/993/18169038/stw062.pdf
PQID 1790744462
PQPubID 42411
PageCount 7
ParticipantIDs proquest_miscellaneous_1816038553
proquest_miscellaneous_1808651323
proquest_journals_1790744462
crossref_primary_10_1093_mnras_stw062
oup_primary_10_1093_mnras_stw062
PublicationCentury 2000
PublicationDate 2016-03-21
PublicationDateYYYYMMDD 2016-03-21
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tassev (2016012718193279000_457.1.993.48) 2013; 6
2016012718193279000_457.1.993.34
2016012718193279000_457.1.993.33
2016012718193279000_457.1.993.36
2016012718193279000_457.1.993.35
2016012718193279000_457.1.993.38
2016012718193279000_457.1.993.37
2016012718193279000_457.1.993.39
Kitaura (2016012718193279000_457.1.993.19) 2015; 450
2016012718193279000_457.1.993.30
2016012718193279000_457.1.993.32
Chuang (2016012718193279000_457.1.993.5) 2015; 452
2016012718193279000_457.1.993.23
2016012718193279000_457.1.993.22
2016012718193279000_457.1.993.25
2016012718193279000_457.1.993.27
2016012718193279000_457.1.993.26
2016012718193279000_457.1.993.29
2016012718193279000_457.1.993.28
2016012718193279000_457.1.993.21
2016012718193279000_457.1.993.20
2016012718193279000_457.1.993.2
2016012718193279000_457.1.993.3
Gil-Marín (2016012718193279000_457.1.993.15) 2015; 451
2016012718193279000_457.1.993.1
2016012718193279000_457.1.993.6
2016012718193279000_457.1.993.7
2016012718193279000_457.1.993.4
2016012718193279000_457.1.993.12
2016012718193279000_457.1.993.11
2016012718193279000_457.1.993.14
2016012718193279000_457.1.993.13
2016012718193279000_457.1.993.16
White (2016012718193279000_457.1.993.52) 2014; 437
2016012718193279000_457.1.993.18
2016012718193279000_457.1.993.17
Manera (2016012718193279000_457.1.993.24) 2015; 447
2016012718193279000_457.1.993.50
2016012718193279000_457.1.993.51
2016012718193279000_457.1.993.53
de Putter (2016012718193279000_457.1.993.10) 2012; 4
Paz (2016012718193279000_457.1.993.31) 2015; 454
2016012718193279000_457.1.993.45
2016012718193279000_457.1.993.44
2016012718193279000_457.1.993.47
2016012718193279000_457.1.993.46
2016012718193279000_457.1.993.49
2016012718193279000_457.1.993.8
2016012718193279000_457.1.993.9
2016012718193279000_457.1.993.41
2016012718193279000_457.1.993.40
2016012718193279000_457.1.993.43
2016012718193279000_457.1.993.42
References_xml – ident: 2016012718193279000_457.1.993.17
  doi: 10.1051/0004-6361:20066170
– ident: 2016012718193279000_457.1.993.40
  doi: 10.1046/j.1365-8711.2002.04999.x
– ident: 2016012718193279000_457.1.993.12
  doi: 10.1088/0004-6256/142/3/72
– ident: 2016012718193279000_457.1.993.53
  doi: 10.1111/j.1365-2966.2012.21573.x
– ident: 2016012718193279000_457.1.993.41
  doi: 10.1086/308059
– ident: 2016012718193279000_457.1.993.11
  doi: 10.1103/PhysRevD.88.063537
– ident: 2016012718193279000_457.1.993.3
  doi: 10.1016/S0370-1573(02)00135-7
– ident: 2016012718193279000_457.1.993.14
– ident: 2016012718193279000_457.1.993.29
  doi: 10.1093/mnras/stt907
– ident: 2016012718193279000_457.1.993.37
– volume: 437
  start-page: 2594
  year: 2014
  ident: 2016012718193279000_457.1.993.52
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2071
  contributor:
    fullname: White
– volume: 450
  start-page: 1836
  year: 2015
  ident: 2016012718193279000_457.1.993.19
  publication-title: MNRAS
  doi: 10.1093/mnras/stv645
  contributor:
    fullname: Kitaura
– ident: 2016012718193279000_457.1.993.42
  doi: 10.1103/PhysRevD.71.063001
– ident: 2016012718193279000_457.1.993.28
  doi: 10.1046/j.1365-8711.2002.05162.x
– volume: 6
  start-page: 36
  year: 2013
  ident: 2016012718193279000_457.1.993.48
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2013/06/036
  contributor:
    fullname: Tassev
– ident: 2016012718193279000_457.1.993.38
  doi: 10.1088/0004-637X/737/1/11
– volume: 451
  start-page: 5058
  year: 2015
  ident: 2016012718193279000_457.1.993.15
  publication-title: MNRAS
  doi: 10.1093/mnras/stv961
  contributor:
    fullname: Gil-Marín
– volume: 447
  start-page: 437
  year: 2015
  ident: 2016012718193279000_457.1.993.24
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2465
  contributor:
    fullname: Manera
– ident: 2016012718193279000_457.1.993.13
  doi: 10.1086/174036
– ident: 2016012718193279000_457.1.993.27
  doi: 10.1093/mnras/stu1972
– ident: 2016012718193279000_457.1.993.34
  doi: 10.1111/j.1745-3933.2010.00835.x
– ident: 2016012718193279000_457.1.993.8
  doi: 10.1088/0004-6256/145/1/10
– ident: 2016012718193279000_457.1.993.33
  doi: 10.1111/j.1365-2966.2008.13561.x
– ident: 2016012718193279000_457.1.993.23
  doi: 10.1093/mnras/sts084
– ident: 2016012718193279000_457.1.993.50
  doi: 10.1093/mnras/stt270
– ident: 2016012718193279000_457.1.993.51
  doi: 10.1103/PhysRevLett.79.3806
– ident: 2016012718193279000_457.1.993.18
  doi: 10.1093/mnrasl/slt172
– ident: 2016012718193279000_457.1.993.35
  doi: 10.1111/j.1365-2966.2006.10710.x
– ident: 2016012718193279000_457.1.993.32
  doi: 10.1093/mnras/stu112
– ident: 2016012718193279000_457.1.993.20
– ident: 2016012718193279000_457.1.993.46
  doi: 10.1093/mnras/stu759
– volume: 452
  start-page: 686
  year: 2015
  ident: 2016012718193279000_457.1.993.5
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1289
  contributor:
    fullname: Chuang
– ident: 2016012718193279000_457.1.993.43
  doi: 10.1103/PhysRevD.74.023522
– ident: 2016012718193279000_457.1.993.39
  doi: 10.1086/307448
– ident: 2016012718193279000_457.1.993.9
  doi: 10.1051/0004-6361/201321463
– ident: 2016012718193279000_457.1.993.6
  doi: 10.1111/j.1365-2966.2005.09318.x
– ident: 2016012718193279000_457.1.993.7
  doi: 10.1093/mnras/248.1.1
– ident: 2016012718193279000_457.1.993.21
– ident: 2016012718193279000_457.1.993.45
  doi: 10.1103/PhysRevD.87.123504
– volume: 454
  start-page: 4326
  year: 2015
  ident: 2016012718193279000_457.1.993.31
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2259
  contributor:
    fullname: Paz
– ident: 2016012718193279000_457.1.993.44
  doi: 10.1086/497090
– ident: 2016012718193279000_457.1.993.25
  doi: 10.1093/mnras/stv984
– volume: 4
  start-page: 19
  year: 2012
  ident: 2016012718193279000_457.1.993.10
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/04/019
  contributor:
    fullname: de Putter
– ident: 2016012718193279000_457.1.993.2
  doi: 10.1093/mnras/stu523
– ident: 2016012718193279000_457.1.993.36
– ident: 2016012718193279000_457.1.993.30
  doi: 10.1111/j.1365-2966.2009.14389.x
– ident: 2016012718193279000_457.1.993.49
  doi: 10.1093/mnras/stu996
– ident: 2016012718193279000_457.1.993.1
– ident: 2016012718193279000_457.1.993.16
  doi: 10.1111/j.1365-2966.2006.10709.x
– ident: 2016012718193279000_457.1.993.4
  doi: 10.1111/j.1365-2966.2011.19250.x
– ident: 2016012718193279000_457.1.993.22
– ident: 2016012718193279000_457.1.993.47
  doi: 10.1088/0004-637X/700/1/479
– ident: 2016012718193279000_457.1.993.26
  doi: 10.1046/j.1365-8711.1999.02825.x
SSID ssj0004326
Score 2.4567626
Snippet The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Publisher
StartPage 993
SubjectTerms Accuracy
Astronomy
Catalogues
Convergence
Covariance
Covariance matrix
Estimating
Galaxies
Inverse
Mathematical models
Matrix
Star & galaxy formation
Title Estimating the power spectrum covariance matrix with fewer mock samples
URI https://www.proquest.com/docview/1790744462
https://search.proquest.com/docview/1808651323
https://search.proquest.com/docview/1816038553
Volume 457
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3PS8MwFA6ykxfRqWw6JYJ6K2ubJk2PY2wOQb1ssFtp2kQE245188d_73tpp0zEXUpLXqG8_Oj3vZd8j5BrYyRMGuY6AUtDBxBx5iiDF0ziAaDnbmo3yD6KySy4n_N5I5JU_ZHCj1g_L5ZJ1a9W765da1ERDcbt9Gn-c_6R2bJqVn4RCIDXbHD__fLWr2frONtm_bU_lfEhOWjQIB3U3XdE9nTRJp1BhfHpMv-kt9Te1-GHqk26D4Bxy6UNhUPj8PUFAKd9OiZ3I5itiD-LZwqoji6w_hm1JymX65ym5RvQYuxjmqMs_wfFECw1Gq1yWBVplaBScHVCZuPRdDhxmjIJTgroYuVIrrMgksaELFRelLrcuKHOslRmvgL-ZhKhgAVmIYArg_xCeBJYlhbKk5oxwU5JqygL3SHUU8K4hgfKAFExvi-z0FM8SgEjKOkHoktuNh6MF7UaRlxnsVlsPR3Xnu4SCu7dYdLb-D5upk0Vo1xYGABDhear72YY8JjFSApdrsFGAgvjQKLZfzZYPVtyzs52f8k52QcUJHBjme_1SAs6RV8A0lipSzvMvgAjSdNC
link.rule.ids 315,783,787,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+power+spectrum+covariance+matrix+with+fewer+mock+samples&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Pearson%2C+David+W&rft.au=Samushia%2C+Lado&rft.date=2016-03-21&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=457&rft.issue=1&rft.spage=993&rft_id=info:doi/10.1093%2Fmnras%2Fstw062&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4065623351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon