Estimating the power spectrum covariance matrix with fewer mock samples

The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will req...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 457; no. 1; pp. 993 - 999
Main Authors Pearson, David W., Samushia, Lado
Format Journal Article
LanguageEnglish
Published London Oxford University Press 21.03.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ∼100 mocks are required for it to fully converge and the inverse covariance matrix converges at the same rate. This method should work equally well for the next generation of galaxy surveys, although a demand for higher accuracy may require adding extra parameters to the fitting function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw062