Investing in Quality Under Autonomous and Induced Learning
The reduction of variability in product performance characteristics is an important focus of quality improvement programs. Learning is intrinsically linked to process improvement and can assume two forms: (i) autonomous learning; and (ii) induced learning. The former is experientially-based, while t...
Saved in:
Published in | IIE transactions Vol. 35; no. 6; pp. 545 - 555 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Norcross
Informa UK Ltd
01.06.2003
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The reduction of variability in product performance characteristics is an important focus of quality improvement programs. Learning is intrinsically linked to process improvement and can assume two forms: (i) autonomous learning; and (ii) induced learning. The former is experientially-based, while the latter is a result of deliberate managerial action. Our involvement in quality and capacity planning with several major corporations in different industries suggested that it would be instructive to devise a model that would prescribe an optimal combination of autonomous and induced learning over time to maximize process improvement. We thus propose such a model to investigate the optimal quality improvement path for a company given that quality costs depend on both autonomous and induced types of learning experienced on a number of quality characteristics. Several properties of an optimal investment path are developed for this problem. For example, it is shown that decisions maximizing short-term gains may actually lead to suboptimal resource utilization decisions when total costs associated with a longer planning horizon are taken into account. Numerical examples are used to assess the sensitivity of the optimal investment plan with respect to changes in several model parameters. |
---|---|
ISSN: | 0740-817X 2472-5854 1545-8830 2472-5862 |
DOI: | 10.1080/07408170304415 |