Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12

[Display omitted] Reduction of CO2 to solar fuels by artificial photosynthesis technology has attracted considerable attention. However, insufficient separation of charge carriers and weak CO2 adsorption hamper the photocatalytic CO2 reduction activity. Herein, we tackle these challenges by introduc...

Full description

Saved in:
Bibliographic Details
Published inScience bulletin (Beijing) Vol. 65; no. 11; pp. 934 - 943
Main Authors Liu, Lizhen, Huang, Hongwei, Chen, Fang, Yu, Hongjian, Tian, Na, Zhang, Yihe, Zhang, Tierui
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Reduction of CO2 to solar fuels by artificial photosynthesis technology has attracted considerable attention. However, insufficient separation of charge carriers and weak CO2 adsorption hamper the photocatalytic CO2 reduction activity. Herein, we tackle these challenges by introducing oxygen vacancies (OVs) on the two-dimensional Bi4Ti3O12 ultrathin nanosheets via a combined hydrothermal and post-reduction process. Selective photodeposition experiment of Pt over Bi4Ti3O12 discloses that the ultrathin structure shortens the migration distance of photo-induced electrons from bulk to the surface, benefiting the fast participation in the CO2 reduction reaction. The introduction of OVs on ultrathin Bi4Ti3O12 nanosheets leads to enormous amelioration on surface state and electronic structure, thereby resulting in enhanced CO2 adsorption, photoabsorption and charge separation efficiency. The photocatalytic experiments uncover that ultrathin Bi4Ti3O12 nanosheets with OVs reveal a largely enhanced CO2 photoreduction activity for producing CO with a rate of 11.7 μmol g−1 h−1 in the gas–solid system, ~3.2 times higher than that of bulk Bi4Ti3O12. This work not only yields efficient ultrathin photocatalysts with OVs, but also furthers our understanding on enhancing CO2 reduction via cooperative tactics.
ISSN:2095-9273
DOI:10.1016/j.scib.2020.02.019