Co-layered integration and interconnect of planar circuits and nonradiative dielectric (NRD) waveguide
A concept of hybrid integration between planar circuits and a nonradiative dielectric (NRD) waveguide is proposed in this paper with preliminary experiments. This approach utilizes co-layered arrangement of the two dissimilar structures, which allows the NRD-guide in direct contact with (or surface...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 48; no. 4; pp. 519 - 524 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2000
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A concept of hybrid integration between planar circuits and a nonradiative dielectric (NRD) waveguide is proposed in this paper with preliminary experiments. This approach utilizes co-layered arrangement of the two dissimilar structures, which allows the NRD-guide in direct contact with (or surface mounted on) the planar circuits. Two basic building-block schemes are presented that involve microstrip line and coplanar waveguide (CPW) with the NRD-guide. The first is to deposit the NRD-guide on the top of a relatively thin microstrip substrate, thus forming unbalanced NRD-guiding hybrid circuits, while the second is to design CPW circuits directly etched on the ground planes of the NRD-guide. The unbalanced NRD-guide is subject to a certain leakage loss, but at a negligible level, and it may even be suppressed completely in certain circumstances. Such an integration technique is found consistent with the concept of low loss interconnects at millimeter-wave frequencies. In other words, the NRD-guide can be used for viable interconnects of co-layered planar circuits with a simple "put and cover" procedure. Measured results of several co-layered hybrid transitions/baluns indicate that satisfactory transmission properties can readily be achieved. The new building blocks are expected to provide an alternative design approach to three-dimensional multilayered millimeter-wave circuits and systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.842022 |